Planck 06

Fermion masses in E_{6} GUT with family permutation symmetry S_{3}

Stefano Morisi
Universitá di Milano, Dipartimento di Chimica Fisica ed Elettrochimica and INFN sezione di Milano
In collaboration with Francesco Caravaglios (Milano)
hep-ph/0510321

So far it is not clear how to extend the Standard Model to include fermion masses. Mass matrices are not univocally fixed by experimental data (masses and mixings).

The remaining arbitrariness can be reduced assuming underlying gauge and flavour symmetries.

Neutrino data give strong indication that flavour symmetry is a discrete one like S_{3}, A_{4}, S_{4}.

Quarks and leptons mixing and mass hierarchies are very different.
This could be a problem in unified models.

We show that in E_{6} it is possible to make a distinction between neutrino and the other fermions and we study the $\mathrm{E}_{6} \times S_{3}$ model.

While charged fermion mass hierarchy is large $m_{\mu} / m_{\tau} \sim 0.06, \quad m_{s} / m_{b} \sim 0.02, \quad m_{c} / m_{t} \sim 0.005$, (E.W scale) neutrino hierarchy is weakest $m_{2} / m_{3}>0.2$ (should be degenerate) (Smirnov)

Mixing hierarchies

$$
U_{\mathrm{HPS}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right), \quad V_{\mathrm{CKM}} \approx\left(\begin{array}{ccc}
0.97 & 0.22 & 0.00 \\
0.22 & 0.97 & 0.03 \\
0.00 & 0.03 & 0.99
\end{array}\right) \approx 1
$$

Harrison, Perkins and Scott, Phys.Lett.B 530(2002)

In lepton sector the ν_{3} is maximally mixed between μ and τ flavours and $\theta_{13}=0$ while ν_{2} is equally mixed between e, μ, τ.

In quark sector the three mixing angles are small, the only relevant is the 1-2 Cabibbo which is smaller than the 1-2 and 2-3 angles in the lepton sector $\theta_{\text {quark }}^{i} \ll \theta_{\text {leptons }}^{i}$

Neutrino data gives us more constrains and informations on flavour symmetry than quark data where $V_{C K M} \approx 1$.

Lepton mixing and flavour symmetry ($\mu \leftrightarrow \tau$ vs \mathbf{S}_{3})

A generic matrix $M_{\nu} \mu \leftrightarrow \tau$ invariant $\left(\mathrm{S}_{2}\right)$ is diagonalized by O

$$
O(\theta)=\left(\begin{array}{ccc}
-\cos \theta & \sin \theta & 0 \\
\frac{1}{\sqrt{2}} \sin \theta & \frac{1}{\sqrt{2}} \cos \theta & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \sin \theta & \frac{1}{\sqrt{2}} \cos \theta & \frac{1}{\sqrt{2}}
\end{array}\right) \quad \Leftrightarrow \quad\left(\begin{array}{ccc}
\sqrt{2 / 3} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

where the solar angle θ is not fixed by the $\mu \leftrightarrow \tau$ symmetry.

The solar angle can be obtained nicely from A_{4} discret symmetry (Ma, Altarelli and Feruglio, Babu, Valle, Frigerio, ...)
or by \mathbf{S}_{3} discrete symmetry of permutation of three objects (Harrison and Scott, Ma, Haba, Grimus, Lavoura, Koide, Kubo, Mohapatra,..).

If $S_{3} \supset S_{2}$ and its breaking scale is $\ll M_{G U T} \Rightarrow \sin \theta_{\text {sol }}=1 / \sqrt{3}$ (Caravaglios and Morisi)

We want to select the unified gauge group G_{g} so that

$$
G_{g} \times S_{3}
$$

gives the observed fermion mass and mixing hierarchies at the electroweak scale.

To explain the different hierarchies in quarks and leptons, we assume that Yukawa are proportional to the vev of some scalars ϕ_{k} that break $\mathrm{S}_{3}, \quad\left(\bar{\psi}_{i} \psi_{j}\right)_{G_{g}} \phi_{k} \varepsilon_{S_{3}}{ }^{i j k} \equiv \bar{\psi}_{i} \psi_{j} Y^{i j}$

$$
\text { Consider } \mathrm{SO}(10) \supset \mathrm{SU}(5) \times \mathrm{U}_{r}(1) \Rightarrow 16=1(-5)+\overline{5}(3)+10(-1)
$$

mass term	$\mathrm{SU}(5)$ operators	$\mathrm{U}_{r}(1)$		
Dirac neutrino	$\mathrm{F} v_{R}$	-2		
up quark	$\mathrm{T} T$	-2	\times	Scalar
:---				
+2				
+2				

The mass terms $T T$ and $F \nu_{R}$ have the same charge, thus we expect that the same scalar is at the origin of their Yukawa interaction.

While neutrino have an approximate S_{3} symmetry, the same symmetry is not observed in up quark sector.

It is difficult to extend the discrete permutation symmetry to all fermions in GUT (quark-lepton symmetry \Leftrightarrow different hierarchies).

In $\operatorname{SU}(5)$ neutrino and charged leptons Yukawa couplings are distinct, however we are interested in model beyond $S U(5)$ since:
-embedding S_{3} in $\operatorname{SU}(5)$ requiring only one Higgs Standard Model doubled we obtain wrong prediction. In fact the renormalizable S_{3} invariant operators give

$$
\begin{gathered}
\lambda_{1} T^{i} T^{i} H, \quad \lambda_{2} T^{i} T^{j} H \Rightarrow \lambda_{1} v\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \lambda_{2} v\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \\
T^{i} T^{i} H \Rightarrow m_{u}=m_{c}=m_{t} ; T^{i} T^{j} H \Rightarrow \text { mixing too big! }
\end{gathered}
$$

-we want to explain why Yukawa are proportional to different scalars $(\mathrm{SU}(5) \subset G)$
-we are interested in non supersymmetric extension (in such case gauge couplings do not unify in SU(5))
S_{3} approximatively exact only for neutrino (S_{3} softly broken in S_{2}), while S_{3} strongly broken in charged fermion sector.

Thus if we require one Higgs and S_{3} symmetry, tree level Yukawa must not introduce any mass terms for charged fermions

$$
\mathrm{E}_{6} \supset \mathrm{SO}(10) \times \mathrm{U}_{t}(1) \supset \mathrm{SU}(5) \times \mathrm{U}_{r}(1) \times \mathrm{U}_{t}(1)=\mathrm{SU}(5) \times \mathrm{U}_{X}(1)
$$

$$
27=1(4)+10(-2)+16(1) \quad \Rightarrow \text { extra singlet } x_{L}
$$

contains two SM singlets that can be right-handed neutrinos

$\mathrm{SU}(5)$ operators	$\mathrm{U}_{r}(1)$	$\mathrm{U}_{t}(1)$
T T (quark up)	-2	+2
$F v_{R}$	-2	+2
$F x_{L}$	+3	+5

$$
H(-3,-5) \subset 351^{\prime}
$$

The Dirac mass term $F v_{R}$ has different quantum numbers from all the other fermions,

A standard model doublet with $\mathrm{U}(1)_{r} \times \mathrm{U}(1)_{t}$ charges $(-3,-5)$ is contained in the 351', so if we put the Higgs in the 351^{\prime} the renormalizable S_{3} symmetric interaction

$$
\text { a) } 27_{i}^{\alpha} 27_{i}^{\beta} 351_{\alpha \beta}^{\prime}
$$

gives only Dirac neutrino Yukawa interaction $\Rightarrow x_{L i}^{t} \nu_{L i}$ diagonal.
Operator (a), does not introduce any mass neither for quarks nor for charged leptons if we put the higgs in the 351'
thus it is possible to make difference between quarks and leptons selecting E_{6} as unified gauge group \Rightarrow we have studied $\mathrm{E}_{6} \times \mathrm{S}_{3}$.

Neutrino and double seesaw

$2727 \supset \mathrm{SU}(5)$	$\mathrm{U}_{r}(1)$	$\mathrm{U}_{t}(1)$	$\mathrm{U}_{x}(1)$
$F v_{R} H$	-5	-3	-8
$F x_{L} H(m)$	0	0	0
$v_{R}^{t} v_{R}\left(m_{v}\right)$	-10	+2	-8
$v_{R}^{t} x_{L}(M)$	-5	+5	0
$x_{L}^{t} x_{L}\left(m_{x}\right)$	0	+8	+8

A scalar singlet with charges $(+5,-5)$, is contained into 351^{\prime} that could come from $\mathbf{7 8} \times \mathbf{3 5 1}$ (since the Higgs is already in the 351')

$$
\begin{aligned}
& \mathrm{E}_{6} \xrightarrow{\langle 78\rangle} \mathrm{SO}(10) \times \mathrm{U}(1) \xrightarrow{\langle 351\rangle} \mathrm{SU}(5) \times \mathrm{U}_{x}(1) . \\
& v_{R}^{t} x_{L}, \quad 27^{i} \mathbf{2 7}^{j} \mathbf{3 5 1}{ }^{k} \mathbf{7 8} \Rightarrow M \sim\langle 351\rangle\langle 78\rangle \\
& x_{L}^{t} x_{L} \text { and } v_{R}^{t} v_{R}, 27272727 \Rightarrow m_{v}, m_{x} \sim\langle 27\rangle^{2} \\
& \left(\begin{array}{lll}
v_{L} & v_{R}^{c} & x_{L}
\end{array}\right)^{i}\left(\begin{array}{llll}
0 & 0 & m \delta_{i j} \\
0 & m_{v} & \delta_{i j} & M_{i j} \\
m & \delta_{i j} & M_{i j} & m_{x} \delta_{i j}
\end{array}\right)\left(\begin{array}{c}
v_{L} \\
v_{R}^{c} \\
x_{L}
\end{array}\right)^{j} \Rightarrow m_{v}\left(\frac{m^{2}}{M^{2}}\right)_{i j}
\end{aligned}
$$

where $m, m_{v} \sim m_{x} \ll M$. Neutrino mixing comes only from M.

We can have the following lagrangian for neutrino

$$
\begin{aligned}
& L=\lambda 27^{i} 27^{j} 351^{k} 78+27^{i} 27^{i} 351^{i} 78 \\
& M=\langle\psi\rangle\left(\begin{array}{ccc}
\frac{\left\langle 351^{1}\right\rangle}{\langle\psi\rangle}+1 & 1 & 1 \\
1 & \frac{\left\langle 351^{2}\right\rangle}{\langle\psi\rangle}+1 & 1 \\
1 & 1 & \frac{\left\langle 351^{3}\right\rangle}{\langle\psi\rangle}+1
\end{array}\right) \\
& \text { where }\langle\psi\rangle=\lambda\left(\left\langle 351^{1}\right\rangle+\left\langle 351^{2}\right\rangle+\left\langle 351^{3}\right\rangle\right) \text {. }
\end{aligned}
$$

When \mathbf{S}_{3} breaks spontaneously in $\mathbf{S}_{2}:\left\langle 351^{1}\right\rangle \neq\left\langle 351^{2}\right\rangle=\left\langle 351^{3}\right\rangle$.

Then M is $\mu \leftrightarrow \tau$ invariant $\Rightarrow \theta_{13}=0$ and $\theta_{a t m}$ maximal.

In the limit $\lambda \rightarrow \infty$ (S_{3} softly broken $) \Rightarrow \sin \theta_{\text {sol }}=1 / \sqrt{3}$
while $\frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{\text {atm }}^{2}} \approx \frac{\left\langle 351_{1}\right\rangle^{2}}{\left(\left\langle 351_{1}\right\rangle-\left\langle 351_{2}\right\rangle\right)^{2}} \approx \frac{1}{35} \Rightarrow\left\langle 351_{1}\right\rangle \sim 5\left\langle 351_{2}\right\rangle$
solar angle can be fitted with λ finite.

$$
\sin \theta_{s o l}=\frac{1}{\sqrt{3}}\left(1+\frac{2}{9}\left(\frac{\left\langle 351_{1}\right\rangle-\left\langle 351_{2}\right\rangle}{\langle\psi\rangle}\right)\right) \equiv \frac{1}{\sqrt{3}}(1+f(\lambda))
$$

The horizontal lines are the upper and the lower limit (3σ) from the experimental central value $\sin \theta_{\text {sol }} \approx 0.547$.

In the limit $\lambda \rightarrow \infty$ we get $\Rightarrow \sin \theta_{\text {sol }}=1 / \sqrt{3}$ but we can fit the solar angle with a λ of order one (no fine tuning).

$\mathrm{SU}(5)$ operators	$\mathrm{U}_{r}(1)$	$\mathrm{U}_{t}(1)$		
$T^{\alpha \beta} T^{\gamma \delta} H^{\sigma}$	-5	-3		
SU(5) singlet				
$(+5,+3)$			$=$	$27^{\alpha} 27^{\beta} 351_{\gamma \sigma}^{\prime} \sum_{\alpha \beta}^{\gamma \sigma}$
:---:				
$\alpha \neq \beta \neq \gamma \neq \sigma$				

$$
78_{\beta}^{\gamma} \times 78_{\beta}^{\rho} \supset \Sigma_{\alpha \beta}^{\gamma \sigma} \Leftrightarrow 78_{a_{\beta}}^{\gamma}, 650_{s_{\beta}}^{\gamma}, 2430_{s}, 2925_{a}
$$

All representations contain $\operatorname{SU}(5)$ singlets with $(+5,+3)$ charges, but up mass terms cames from $2430{ }^{i}$.
$2430^{i} \subset 351^{\prime} \times 27 \times 27$ but we have found $\Sigma \neq 351^{\prime} \times 27 \times 27$.
The $\mathbf{2 4 3 0}{ }^{i}$ is not proportional to $\mathbf{3 5 1}{ }^{i} \Rightarrow$ up and neutrino sectors can have inverted hierarchies.

Down quarks and charged leptons ($M_{l}=M_{d}^{T}$)

We need 1728, differently from up there are two distinct operators

$$
\begin{gathered}
g_{1} 27_{\mathbf{i}}^{\alpha} 27_{\mathbf{j}}^{\beta} 351^{* * \delta} 1728_{\delta \beta \mathbf{i}}^{* \rho} \varepsilon_{\alpha} \gamma \rho+g_{2} 27_{\mathbf{i}}^{\alpha} 27_{\mathbf{j}}^{\beta} 351^{* \gamma \delta} 1728_{\delta \alpha \mathbf{i}}^{* \rho} \varepsilon_{\beta \gamma \rho} \\
\Rightarrow g_{1} d_{L i} d_{R j}^{c} h\left\langle\overline{1728}_{i}\right\rangle+g_{2} d_{L j} d_{R i}^{c} h\left\langle\overline{1728}_{i}\right\rangle
\end{gathered}
$$

2430

$2430^{i} \subset 351^{\prime} \times 27 \times 27$ contains a singlet of $S U(5)$ with charges $(+5,+3)$. Consider, for example, the following up mass term

$$
u_{L}^{1} u_{R}^{1 c} H=27^{12} 27^{6} 351_{22,26}^{\prime} \Sigma_{12,6}^{22,26}, \quad \Sigma \neq 351_{12,6}^{\prime} 27^{22} 27^{26}
$$

index 27	$\mathrm{Q}_{e m}$	Y	I_{3}^{w}
6^{*}	$2 / 3$	$2 / 3$	0
12^{*}	$-2 / 3$	$-1 / 6$	$-1 / 2$
22	0	0	0
26	0	$-1 / 2$	$1 / 2$

$$
351^{\prime}=\overline{27} \times \overline{27}
$$

The tensor Σ must to contain simultaneously all the indices $6,12,26$ otherwise it is not a standard model singlet. Observe that if the component 27^{26} take a vev, we have an extra $\mathrm{SU}(2)_{L}$ doublets, but we want only one higgs particles.

Conclusion

Neutrino physics is one of the most important guide beyond SM.
In particular neutrino data give strong constrains to select the underlying flavour symmetry.

Neutrino data are well explained by discrete permutation symmetry.
Quarks and leptons hierarchies are very different so it is difficult to embed S_{3} in unified gauge group.

In E_{6}, putting the Higgs in the $\mathbf{3 5 1}^{\prime}$, the renormalizable S_{3} invariant interaction give only Dirac neutrino mass term $x_{L i}^{t} \nu_{L i}$.

While we need non renormalizable interactions for the charged fermions that take Yukawa only after $\mathrm{E}_{6} \times S_{3}$ breaking.

We have to study the $\mathbf{E}_{6} \times \mathbf{S}_{3}$ renormalizable invariant Lagrangian that fits all data at the electroweak scale.

Thank you.

NEUTRINO DATA

The mixing angles and the Δm^{2} measured are

	Iower limit (3σ)	best value	upper limit (3σ)
$\left(\Delta m_{\text {sol }}^{2}\right)_{L A}\left(10^{-5} \mathrm{eV}^{2}\right)$	5.4	6.9	9.5
$\left(\Delta m_{\text {atm }}^{2}\right)\left(10^{-3} \mathrm{eV}^{2}\right)$	1.4	2.6	3.7
$\sin ^{2} \theta_{12}(\mathrm{sol})$	0.23	0.30	0.39
$\sin ^{2} \theta_{23}(\mathrm{~atm})$	0.31	0.52	0.72
$\sin ^{2} \theta_{13}$	0	0.006	0.054

Maltoni et al hep-ph/0309130

$$
\sin ^{2} \theta_{13}=0, \sin ^{2} \theta_{23}=1 / 2, \sin ^{2} \theta_{12}=1 / 3
$$

are in well agreement with data and the MNS is the following

$$
U_{(H P S)}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \quad \text { Harrison }- \text { Perkins }- \text { Scott }
$$

Harrison, Perkins e Scott, Phys.Lett.B 530(2002)

THE $S_{3} \supset S_{2}$ NEUTRINO MODEL

$$
\begin{gathered}
L_{y u k}=g \sum_{i} \bar{\nu}_{L}^{i} \nu_{R}^{i} H+\lambda_{1} \sum_{i} \bar{\nu}_{R}^{c} \nu_{R}^{i} \phi^{i}+\lambda_{2} \sum_{i, j} \bar{\nu}_{R}^{c} \nu_{R}^{j} \psi+\text { h.c. } \\
M_{\nu}^{D}=g v\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad M_{\nu}^{R}=\langle\psi\rangle\left(\begin{array}{ccc}
\frac{\left\langle\phi^{1}\right\rangle}{\langle\psi\rangle}+1 & 1 & 1 \\
1 & \frac{\left\langle\phi^{2}\right\rangle}{\langle\psi\rangle}+1 & 1 \\
1 & 1 & \frac{\left\langle\phi^{3}\right\rangle}{\langle\psi\rangle}+1
\end{array}\right)
\end{gathered}
$$

that can be diagonalized as follows

$$
\begin{aligned}
& O^{T}\left(\theta_{s o l}\right)\left(\begin{array}{ccc}
\frac{\left\langle\phi^{1}\right\rangle}{\langle\psi\rangle}+1 & 1 & 1 \\
1 & \frac{\left\langle\phi^{2}\right\rangle}{\langle\psi\rangle}+1 & 1 \\
1 & 1 & \frac{\left\langle\phi^{3}\right\rangle}{\langle\psi\rangle}+1
\end{array}\right) O\left(\theta_{\text {sol }}\right)=\left(\begin{array}{ccc}
m_{R 1} & 0 & 0 \\
0 & m_{R 2} & 0 \\
0 & 0 & m_{R 3}
\end{array}\right) \\
& \quad \Rightarrow \sqrt{2} \sin 2 \theta_{\text {sol }}-\cos 2 \theta_{\text {sol }}=\frac{m_{R_{1}}+m_{R_{2}}-2 m_{R_{3}}}{m_{R_{2}}-m_{R_{1}}}=R
\end{aligned}
$$

where $m_{R_{2}} \sim\langle\psi\rangle S_{3}$ singlet mass. Assuming $\langle\psi\rangle \gg\left\langle\phi_{i}\right\rangle$

$$
R \rightarrow 1 \Rightarrow \sin \theta_{\text {sol }}=1 / \sqrt{3}
$$

The $\mathrm{E}_{6} \times S_{3}$ full lagrangian

It is the following

$$
\begin{gathered}
L=L_{\nu}+L_{\text {charged fermions }} \\
L_{\nu}=27_{i}^{\alpha} 27_{i}^{\beta} 351_{\gamma \delta}^{\prime}+27_{i}^{\alpha} 27_{i}^{\beta} 27_{k \alpha}^{*} 27_{k \beta}^{*} \\
+27_{i}^{\alpha} 27_{j}^{\beta}\left(351_{\gamma \alpha}^{k} 78_{\beta}^{\gamma}+351_{\gamma \beta}^{k} 78_{\alpha}^{\gamma}\right) \\
+27_{i}^{\alpha} 27_{i}^{\beta}\left(351_{\gamma \alpha}^{i} 78_{\beta}^{\gamma}+351_{\gamma \beta}^{i} 78_{\alpha}^{\gamma}\right) \\
L_{\mathrm{fc}}= \\
27_{i}^{\alpha} 27_{i}^{\beta} 351_{\gamma \delta}^{\prime} 2430_{\alpha \beta}^{i} \gamma \delta+ \\
\\
+27_{i}^{\alpha} 27_{i}^{\beta} 351^{*} \gamma \delta 1728_{i \beta \delta}^{\rho} \varepsilon_{\alpha \gamma \rho} \\
\\
+27_{i}^{\alpha} 27_{j}^{\beta} 351^{* *} \gamma \delta 1728_{i \beta \delta}^{\rho} \varepsilon_{\alpha \gamma \rho}+ \\
+27_{i}^{\alpha} 27_{i}^{\beta} 27_{k}^{\gamma} \varepsilon_{\alpha \beta \gamma}
\end{gathered}
$$

$$
\mathrm{E}_{6} \supset \mathrm{SU}(2) \times \mathrm{SU}(6) \supset \mathrm{SU}(5) \times \mathrm{U}_{T_{3}}(1) \times \mathrm{U}^{\prime}(1)
$$

$$
\begin{gathered}
Q^{\prime}=-\frac{3}{4} Q_{r}+\frac{5}{4} Q_{t}, \quad Q_{T_{3}}=-\frac{1}{4} Q_{r}-\frac{1}{4} Q_{t} \\
27=(2, \overline{6})+(1,15)=R+T= \\
=\left(\begin{array}{llllll}
\mathbf{v}_{R 1}^{c} & D_{1} & D_{2} & D_{3} & \bar{N}_{L} & \bar{E}_{L} \\
\mathbf{x}_{L} & d_{R 1}^{c} & d_{R 2}^{c} & d_{R 3}^{c} & v_{L} & e_{L}
\end{array}\right)_{a \alpha}+\left(\begin{array}{cccccc}
0 & \bar{D}_{1} & \bar{D}_{2} & \bar{D}_{3} & -N_{L} & E_{L} \\
-\bar{D}_{1} & 0 & u_{R 3}^{c} & -u_{R 2}^{c} & -d_{L 1} & u_{L 1} \\
-\bar{D}_{2} & -u_{R 3}^{c} & 0 & u_{R 1} & -d_{L 2} & u_{L 2} \\
-\bar{D}_{3} & u_{R 2}^{c} & -u_{R 1}^{c} & 0 & -d_{L 3} & u_{L 3} \\
N_{L} & d_{L 1} & d_{L 2} & d_{L 3} & 0 \\
-E_{L} & -u_{L 1} & -u_{L 2} & -u_{L 3} & -e_{R}^{c} & 0
\end{array}\right)_{\alpha \beta}^{c}
\end{gathered}
$$

$S U_{L}(2)$ is contained in $S U(6)$ and $S U(6) \supset S U(5) \times U^{\prime}(1)$

$$
6=1(-5)+5(1), \quad 15=5(-4)+10(2)
$$

$$
S U(2) \times S U(6) \xrightarrow{\langle 78\rangle} U(1) \times S U(6) \xrightarrow{\langle 351\rangle} S U(5) \times U_{x}(1)
$$

