Quark-lepton complementarity, neutrino and standard model data
 $$
\text { predict } \theta_{13}{ }^{\text {PMNS }}=9_{-2}^{+1} \operatorname{deg}
$$

Paris, Planck ‘06

Marco Picariello

Università
degli STUDI di LECCE

Quark-Lepton complementarity

- Neutrino experiments confirm that the PMNS lepton mixing matrix contains large mixing angles:
atmospheric mixing $\theta_{23}{ }^{\text {PMNS }}$ is compatible with 45 deg ; the solar mixing $\theta_{12}{ }^{\mathrm{PMNS}}$ is approx 34 deg.
- To be compared with $\theta_{13}{ }^{\text {PMNS }}$ and the mixing angles in the CKM matrix.
- The disparity between quark and lepton mixing angles has been viewed in terms of a 'quark-lepton complementarity' (QLC) which can be expressed in the relations
θ_{12} PMNS $+\theta_{12}$ CKM $\simeq 45 \mathrm{deg}$
$\theta_{23}{ }^{\text {PMNS }}+\theta_{23}{ }^{\text {CKM }} \simeq 45 \mathrm{deg}$

Correlation matrix

Definition

- Possible consequences of QLC have been investigated in the literature and in particular a simple correspondence between the PMNS and CKM matrices has been proposed and analyzed in terms of a correlation matrix.
- The correlation matrix is simply defined as the product of the CKM with the PMNS matrices
- There are unknown phases

Correlation matrix

Zero order approximation

- For central values of the experimental data the $(1,3)$ entry of the correlation matrix is not zero.
- To include particular correlation matrix
- bimaximal (two angles of 45 deg and a vanishing one)
- tribimaximal (one angle of 45 deg , one with $\tan ^{2} \theta=$ 0.5 and a third vanishing one)
one needs models with renormalization effects (relevant only for large $\tan \beta$ and quasi degenerate v)

Correlation matrix

First order approximation

- Owing to the uncertainty in the value for θ_{13} PMNS , the $(1,3)$ entry of correlation matrix may or may not include zero.

All the other CKM and PMNS mixing parameters are fixed at their best fit points.

Bottom up approach

- We use all the experimental data with their incertitude in a Monte Carlo simulation to convolute them
- The correlation matrix CKM * PMNS has:
$-0.3<\tan ^{2} \theta_{12}<1$.
$-0.5<\tan ^{2} \theta_{23}<1.4$
$-\sin ^{2} \theta_{13}<0.1$

Correlation matrix: θ_{12} and θ_{23}

Picariello Marco - Lecce

Correlation matrix: θ_{13}

Top down approach

- If we assume that the correlation matrix has:
$-0.3<\tan ^{2} \theta_{12}<1$.
$-0.5<\tan ^{2} \theta_{23}<1.4$
$-\sin ^{2} \theta_{13}=0<-------$ Hypotesis
then we get that the unknow mixing lepton angle $\theta_{13}{ }^{\text {PMNS }}$ is $9_{-2}^{+1} \mathrm{deg}$.

PMNS matrix: θ_{12} PMNS and θ_{23} PMNS

(left) $\tan ^{2} \theta_{23}=1.0, \sin ^{2} \theta_{13}=0$, $\tan ^{2} \theta_{12}=0.3$ (dashed), 0.5 (continuos), 1.0 (dot-dashed)
(right) $\tan ^{2} \theta_{12}=0.5, \sin ^{2} \theta_{13}=0$,
$\tan ^{2} \theta_{23}=0.5$ (dashed), 1.0 (continuos), 1.4 (dot-dashed)

PMNS matrix: θ_{13} PMNS

```
\mp@subsup{\operatorname{tan}}{}{2}\mp@subsup{0}{12}{}=0.5,
\mp@subsup{\operatorname{sin}}{}{2}\mp@subsup{0}{13}{}=0,
\mp@subsup{\operatorname{tan}}{}{2}\mp@subsup{0}{23}{}=0.5\mathrm{ (dashed), 1.0 (continuos), 1.4 (dot-dashed)}
```


$\sin ^{2} \theta_{13}{ }^{\text {PMNS }}$ as a function of $\tan ^{2} \theta_{23}$

Quark-lepton complementarity, neutrino and standard model data
 $$
\text { predict } \theta_{13}{ }^{\text {PMNS }}=9_{-2}^{+1} \operatorname{deg}
$$

Paris, Planck ‘06

Marco Picariello

Università
degli STUDI di LECCE

