Quark-lepton complementarity, neutrino and standard model data predict $\theta_{13}^{PMNS} = 9^{+1}_{-2} \text{ deg}$

Paris, Planck '06

Marco Picariello

Quark-Lepton complementarity

• Neutrino experiments confirm that the PMNS lepton mixing matrix contains large mixing angles:

atmospheric mixing θ_{23}^{PMNS} is compatible with 45 deg; the solar mixing θ_{12}^{PMNS} is approx 34 deg.

- To be compared with $\theta_{13}^{\text{PMNS}}$ and the mixing angles in the CKM matrix.
- The disparity between quark and lepton mixing angles has been viewed in terms of a 'quark-lepton complementarity' (QLC) which can be expressed in the relations

 $\theta_{12}^{\text{PMNS}} + \theta_{12}^{\text{CKM}} \simeq 45 \text{ deg}$ $\theta_{23}^{\text{PMNS}} + \theta_{23}^{\text{CKM}} \simeq 45 \text{ deg}$

Correlation matrix Definition

- Possible consequences of QLC have been investigated in the literature and in particular a simple correspondence between the PMNS and CKM matrices has been proposed and analyzed in terms of a correlation matrix.
- The correlation matrix is simply defined as the product of the CKM with the PMNS matrices
- There are unknown phases

Correlation matrix Zero order approximation

- For central values of the experimental data the (1,3) entry of the correlation matrix is not zero.
- To include particular correlation matrix
 - bimaximal (two angles of 45 deg and a vanishing one)
 - tribimaximal (one angle of 45 deg, one with $\tan^2 \theta = 0.5$ and a third vanishing one)

one needs models with renormalization effects (relevant only for large tan β and quasi degenerate v)

Correlation matrix First order approximation

• Owing to the uncertainty in the value for $\theta_{13}^{\text{PMNS}}$, the (1,3) entry of correlation matrix may or may not include zero.

All the other CKM and PMNS mixing parameters are fixed at their best fit points.

Bottom up approach

- We use all the experimental data with their incertitude in a Monte Carlo simulation to convolute them
- The correlation matrix CKM * PMNS has:
 - $-0.3 < \tan^2 \theta_{12} < 1.$
 - $-0.5 < \tan^2 \theta_{23} < 1.4$
 - $-\sin^2\theta_{13} < 0.1$

Correlation matrix: θ_{12} and θ_{23}

Correlation matrix: θ_{13}

Top down approach

- If we assume that the correlation matrix has:
 - $-0.3 < \tan^2 \theta_{12} < 1.$
 - $-0.5 < \tan^2 \theta_{23} < 1.4$
 - $-\sin^2 \theta_{13} = 0 <$ ------ Hypotesis

then we get that the unknow mixing lepton angle $\theta_{13}^{\text{PMNS}}$ is 9^{+1}_{-2} deg.

PMNS matrix: $\theta_{12}^{\text{PMNS}}$ and $\theta_{23}^{\text{PMNS}}$

(left) $\tan^2 \theta_{23} = 1.0$, $\sin^2 \theta_{13} = 0$, $\tan^2 \theta_{12} = 0.3$ (dashed), 0.5 (continuos), 1.0 (dot-dashed) (right) $\tan^2 \theta_{12} = 0.5$, $\sin^2 \theta_{13} = 0$, $\tan^2 \theta_{23} = 0.5$ (dashed), 1.0 (continuos), 1.4 (dot-dashed) Picariello Marco - Lecce 10

$\sin^2 \theta_{13}^{\text{PMNS}}$ as a function of $\tan^2 \theta_{23}$

Quark-lepton complementarity, neutrino and standard model data predict $\theta_{13}^{PMNS} = 9^{+1}_{-2} \text{ deg}$

Paris, Planck '06

Marco Picariello

