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1. Introduction

Models of intersecting branes (see [1] for an overview) have been under an intense theoretical

scrutiny in the last several years. The motivations for studying this class of theories are

manifolds, being them obtained from special vacua of string theory, for instance from

the orientifold construction [2 – 4]. Their generic gauge structure is of the form SU(3) ×
SU(2)×U(1)Y ×U(1)p, where the symmetry of the Standard Model (SM) is enlarged with

a certain number of extra abelian factors (p). Several phenomenological studies [5 – 10]

have allowed to characterize their general structure, whose string origin has been analyzed

at an increasing level of detail [11, 12] down to more direct issues, connected with their

realization as viable theories beyond the SM. Related studies of the Stückelberg field [13]

in a non-anomalous context have clarified this mechanism of mass generation and analyzed

some of its implications at colliders both in the SM and in its supersymmetric extensions.

In scenarios with extra dimensions where the interplay between anomaly cancellations

in the bulk and on the boundary branes is critical for their consistency, very similar models

could be obtained following the construction of [14], with a suitable generalization in order

to generate at low energy a non abelian gauge structure.

Specifically, the role played by the extra U(1)’s at low energy in theories of this type

after electroweak symmetry breaking has been addressed in [5 – 7], where some of the

quantum features of their effective actions have been clarified. These, for instance, concern

the phases of these models, from their defining phase, the Stückelberg phase, being the

anomalous U(1) broken at low energy but with a gauge symmetry restored by shifting

(Stückelberg) axions, down to the electroweak phase - or Higgs-Stückelberg phase, (HS) -

where the vev’s of the Higgs of the SM combine with the Stückelberg axions to produce a

physical axion [5] and a certain number of goldstone modes. The axion in the low energy

effective action is interesting both for collider physics and for cosmology [8], working as a

modified Peccei-Quinn (PQ) axion. In this respect some interesting proposals to explain an

anomaly in gamma ray propagation as seen by MAGIC [15] using a pseudoscalar (axion-

like) has been presented recently, while more experimental searches of effects of this type

are planned for the future by several collaborations using Cerenkov telescopes (see [15] for

more details and references). Other interesting revisitations of the traditional Weinberg-

Wilczek axion [16] to evade the astrophysical constraints and in the context of Grand

Unification/mirror worlds [17] may well deserve attention in the future and be analyzed

within the framework that we outline below. At the same time, comparisons between

anomalous and non anomalous string constructions of models with extra Z ′s should also

be part of this analysis [18].

The presence of axion-like particles in effective theories is, in general, connected to an

anomalous gauge structure, but for reasons which may be rather different and completely
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unrelated, as discussed in [8]. For the rest, though, the study of the perturbative expansion

in theories of this type is rather general and shows some interesting features that deserve

a careful analysis. In [6, 7] several steps in the analysis of the perturbative expansion

have been performed. In particular it has been shown how to organize the loop expansion

in a gauge-invariant way in 1/M1, where M1 is the Stückelberg mass. A way to address

this point is to use a typical Rξ gauge and follow the pattern of cancellation of the gauge

parameter in order to characterize it. This has been done up to 3-loop level in a simple

U(1) × U(1) model where one of the two U(1)’s is anomalous.

The Stückelberg symmetry is responsible for rendering the anomalous gauge bosons

massive (with a mass M1) before electroweak symmetry breaking. A second scale M

controls the interaction of the axions with the gauge fields but is related to the first by

a condition of gauge invariance in the effective action [8]. In general, for a theory with

several U(1)’s, there is an independent mass scale for each Stückelberg field.

In the case of a complete extension of the SM incorporating anomalous U(1)’s, all the

neutral current sectors, except for the photon current, acquire an anomalous contribution

that modifies the trilinear (chiral) gauge interactions. For the Z gauge boson this anoma-

lous component decouples as M1 gets large, though it remains unspecified. For instance,

in theories containing extra dimensions it could even be of the order of 10 TeV’s or so, in

general being of the order of 1/R, where R is the radius of compactification. In other con-

structions [4] based on toroidal compactifications with branes wrapping around the extra

dimensions, their masses and couplings are expressed in terms of a string scale Ms and

of the integers characterizing the wrappings [9]. Beside the presence of the extra neutral

currents, which are common to all the models with extra abelian gauge structures, here,

in addition, the presence of chiral anomalies leaves some of the trilinear interactions to

contribute even in the massless fermion (chiral) limit, a feature which is completely absent

in the SM, since in the chiral limit these vertices vanish.

As we are going to see, the analysis of these vertices is quite delicate, since their

behaviour is essentially controlled by the mass differences within a given fermion genera-

tion [7], and for this reason they are sensitive both to spontaneous and to chiral symmetry

breaking. The combined role played by these sources of breaking is not unexpected, since

any pseudoscalar induced in an anomalous theory feels both the structure of the QCD

vacuum and of the electroweak sector, as in the case of the Peccei-Quinn (PQ) axion.

In this work we are going to proceed with a general analysis of these vertices, extending

the discussion in [7]. Our analysis here is performed at a field theory level, leaving the

phenomenological discussion to a companion work. Our work is organized as follows.

After a brief summary on the structure of the effective action, which has been included

to make our treatment self-contained, we analyze the Slavnov-Taylor identities of the the-

ory, focusing our attention on the trilinear gauge boson vertices. Then we characterize the

structure of the Zγγ and ZZγ vertices away from the chiral limit, extending the discussion

presented in [7]. In particular we clarify when the CS terms can be absorbed by a redis-

tribution of the anomaly before moving away from the chiral limit. In models containing

several anomalous U(1)′s different theories are identified by the different partial anomalies

associated to the trilinear gauge interactions involving at least three extra Z ′s. In this

– 3 –



J
H
E
P
0
5
(
2
0
0
8
)
0
1
5

A B C D

Figure 1: Counterterms allowed in the low energy effective action in the chiral limit: anomalous
contributions (A), CS interaction (B), WZ term (C) and b−B mixing contribution (D). In particular
the bilinear mixing of the axions with the gauge fields is vanishing only for on-shell vertices and is
removed in the Rξ gauge in the WZ case. A discussion of this term and its role in the GS mechanism
can be found in a forthcoming paper.

case the CS terms are genuine components which are specific for a given model and are

accompanied by a specific set of axion counterterms. Symmetric distributions of the partial

anomalies are sufficient to exclude all the CS terms, but these particular assignments may

not be general enough.

Away from the chiral limit, we show how the mass dependence of the vertices is affected

by the external Ward identity, which are a generic feature of anomalous interactions for

nonzero fermion masses. This point is worked out using chiral projectors and counting

the mass insertions into each vertex. On the basis of this study we are able to formulate

general and simple rules which allow to handle quite straightforwardly all the vertices of

the theory. We conclude with some phenomenological comments concerning the possibility

of future studies of these theories at the LHC. In an appendix we present the Faddeev-

Popov lagrangean of the model, which has not been given before, and that can be useful

for further studies of these theories.

1.1 Construction of the effective action

The construction of the effective action, from the field theory point of view, proceeds as

follows [5, 7].

One introduces a set of counterterms in the form of CS and WZ operators and requires

that the effective action is gauge invariant at 1-loop. Each anomalous U(1) is accompanied

by an axion, and every gauge variation of the anomalous gauge field can be cancelled by

the corresponding WZ term. The remaining anomalous gauge variations are cancelled by

CS counterterms. A list of typical vertices and counterterms are shown in figure 1.

We consider the simplest anomalous extension of the SM with a gauge structure of the

form SU(3)×SU(2)×U(1)Y ×U(1)B model with a single anomalous U(1)B . The anomalous

contributions are those involving the B gauge boson and involve the trilinear (triangle)

vertices BBB, BY Y,BBY, BWW and BGG, where W ’s and the G’s are the SU(2) and

SU(3) gauge bosons respectively. All the remaining trilinear interactions mediated by

fermions are anomaly-free and therefore vanish in the massless limit. Therefore the axion

(b) associated to B appears in abelian counterterms of the form bFB∧FB, bFB∧FY , bFY ∧FY

and in the analogous non-abelian ones bTrW ∧ W and bTrG ∧ G. In the absence of a

kinetic term for the axion b, its role is unclear: it allows to “cancel” the anomaly but can
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be gauged away. As emphasized by Preskill [19], the role of the Wess-Zumino term is, at

this stage, just to allow a consistent power counting in the perturbative expansion, hinting

that an anomalous theory is non-renormalizable, but, for the rest, unitary below a certain

scale. Theories of this type are in fact characterized by a unitarity bound since a local

counterterm is not sufficient to erase the bad high energy behaviour of the anomaly [20].

Although the structure of the vertices constructed in this work is identified using the WZ

effective action at the lowest order (using only the axion counterterm), their extension to

the Green-Schwarz case is straightforward. In this second case the vertices here defined

need to be modified with the addition of extra massless poles on the external gauge lines.

The b field remains unphysical even in the presence of a Stückelberg mass term for the B

field, ∼ (∂b − MB)2 since the gauge freedom remains and it is then natural to interpret b

as a Nambu-Goldstone mode. In a physical gauge it can be set to vanish.

Things change drastically when the B field mixes with the other scalars of the Higgs

sector of the theory. In this case a linear combination of b and the remaining CP-odd

phases (goldstones) of the Higgs doublets becomes physical and is called the axi-Higgs.

This happens only in specific potentials characterized also by a global U(1)PQ symmetry

(VPQ) [5] which are, however, sufficiently general. In the absence of Higgs-axion mixing

the CP odd goldstone modes of the broken theory, after electroweak symmetry breaking,

are just linear combinations of the Stückelberg and of the goldstone mode of the Higgs

potential and no physical axion appears in the spectrum.

For potentials that allow a physical axion, even in the massless case, the axion mass

can be lifted by the QCD vacuum due to instanton effects exactly as for the Peccei-Quinn

axion, but now the spectrum allows an axion-like particle.

1.2 Anomaly cancellation in the interaction eigenstate basis, CS terms and

regularizations

The anomalies of the model are cancelled in the interaction eigenstate basis of (b,AY , B,W )

and the CS and WZ terms are fixed at this stage. The B field is massive and mixes with

the axion, but the gauge symmetry is still intact. The Ward identities of the theory for the

triangle diagrams assume a nontrivial form due to the B∂b mixing. In the case of on-shell

trilinear vertices one can show that these mixing terms vanish.

The CS counterterms are necessary in order to cancel the gauge variations of the Y,W

and G gauge bosons in anomalous diagrams involving the interaction with B. These are

the diagrams mentioned before. The role of these terms is to render vector-like at 1-loop

all the currents which become anomalous in the interaction with the B gauge boson. For

instance, in a triangle such as Y BB, the AY B ∧FB CS term effectively “moves” the chiral

projector from the Y vertex to the B vertex symmetrically on the two B’s, assigning the

anomalies to the B vertices. These will then be cancelled by the axion b via a suitable WZ

term (bFB ∧ FY ).

The effective action has the structure given by

S = S0 + San + SGS + SCS (1.1)
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where S0 is the classical action. It is a canonical gauge theory with dimension-4 operators

whose explicit structure can be found in [7]. In eq. (1.1) the anomalous contributions com-

ing from the 1-loop triangle diagrams involving abelian and non-abelian gauge interactions

are summarized by the expression

San =
1

2!
⟨TBWW BWW ⟩+

1

2!
⟨TBGGBGG⟩ +

1

3!
⟨TBBBBBB⟩

+
1

2!
⟨TBY Y BY Y ⟩ +

1

2!
⟨TY BBY BB⟩, (1.2)

where the symbols ⟨⟩ denote integration [6]. In the same notations the Wess Zumino (WZ)

(or, equivalently, Green-Schwarz GS) counterterms are given by

SGS =
CBB

M
⟨bFB ∧ FB⟩ +

CY Y

M
⟨bFY ∧ FY ⟩ +

CY B

M
⟨bFY ∧ FB⟩

+
F

M
⟨bTr[FW ∧ FW ]⟩ +

D

M
⟨bTr[FG ∧ FG]⟩, (1.3)

and the gauge dependent CS abelian and non abelian counterterms [12] needed to cancel

the mixed anomalies involving a B line with any other gauge interaction of the SM take

the form

SCS = +d1⟨BY ∧ FY ⟩ + d2⟨Y B ∧ FB⟩
+c1⟨ϵµνρσBµCSU(2)

νρσ ⟩ + c2⟨ϵµνρσBµCSU(3)
νρσ ⟩. (1.4)

Explicitly

⟨TBWW BWW ⟩ ≡
∫

dx dy dzT λµν,ij
BWW (z, x, y)Bλ(z)W µ

i (x)W ν
j (y) (1.5)

and so on.

The non-abelian CS forms are given by

CSU(2)
µνρ =

1

6

[

W i
µ

(

FW
i, νρ +

1

3
g2 ε

ijkW j
ν W k

ρ

)

+ cyclic

]

, (1.6)

CSU(3)
µνρ =

1

6

[

Ga
µ

(

FG
a, νρ +

1

3
g3 fabcGb

νGc
ρ

)

+ cyclic

]

. (1.7)

In our conventions, the field strengths are defined as

FW
i, µν = ∂µW i

ν − ∂νW
i
µ − g2εijkW

j
µW k

ν = F̂W
i, µν − g2εijkW

j
µW k

ν (1.8)

FG
a, µν = ∂µGa

ν − ∂νG
a
µ − g3fabcG

b
µGc

ν = F̂G
a, µν − g3fabcG

b
µGc

ν , (1.9)

whose variations under non-abelian gauge transformations are

δSU(2)C
SU(2)
µνρ =

1

6

[

∂µθ
i (F̂W

i, νρ) + cyclic
]

, (1.10)

δSU(3)C
SU(3)
µνρ =

1

6

[

∂µϑ
a (F̂G

a, νρ) + cyclic
]

, (1.11)

where F̂ denotes the “abelian” part of the non-abelian field strength.

– 6 –



J
H
E
P
0
5
(
2
0
0
8
)
0
1
5

Coming to the formal definition of the effective action, interpreted as the generator of

the 1-particle irreducible diagrams with external classical fields, this is defined, as usual,

as a linear combination of correlation functions with an arbitrary number of external lines

of the form AY , B,W,G, that we will denote conventionally as W(Y,B,W ). It is given by

W [Y,B,W,G]=
∞
∑

n1=1

∞
∑

n2=1

in1+n2

n1!n2!

∫

dx1 . . . dxn1
dy1 . . . dyn2

T λ1...λn1
µ1...µn2 (x1 . . . xn1

, y1 . . . yn2
)

Bλ1(x1) . . . Bλn1 (xn1
)AY µ1

(y1) . . . AY µn2
(yn2

) + . . .

where we have explicitly written only its abelian part and the ellipsis refer to the additional

non abelian or mixed (abelian/non-abelian) contributions. We will be using the invariance

of the effective action under re-parameterizations of the external fields to obtain information

on the trilinear vertices of the theory away from the chiral limit. Before coming to that

point, however, we show how to fix the structure of the counterterms exploiting its BRST

symmetry. This will allow to derive simple STI’s for the action involving the anomalous

vertices.

2. BRST conditions in the Stückelberg and HS phases

We show in this section how to fix the counterterms of the effective action by imposing

directly the STI’s on its anomalous vertices in the two broken phases of the theory, thereby

removing the Higgs-axion mixing of the low energy effective theory. As we have already

mentioned, the lagrangean of the Stückelberg phase contains a coupling of the Stückelberg

field to the gauge field which is typical of a goldstone mode. In [6, 7] this mixing has

been removed and the WZ counterterms have been computed in a particular gauge, which

is a typical Rξ gauge with ξ = 1. Here we start by showing that this way of fixing the

counterterms is equivalent to require that the trilinear interactions of the theory in the

Stückelberg phase satisfy a generalized Ward identity (STI).

After electroweak symmetry breaking, in general one would be needing a second gauge

choice, since the new breaking would again re-introduce bilinear derivative couplings of

the new goldstones to the gauge fields. So the question to ask is if the STI’s of the first

phase, which fix completely the counterterms of the theory and remove the b-B mixing, are

compatible with the STI’s of the second phase, when we remove the coupling of the gauge

bosons to their goldstones. The reason for asking these questions is obvious: it is convenient

to fix the counterterms once and for all in the effective lagrangeans and this can be more

easily done in the Stückelberg phase or in the HS phase depending on whether we need the

effective action either expressed in terms of interactions or of mass eigenstates respectively.

In both cases we need generalized Ward identities which are local. The presence of bilinear

mixings on the external lines of the 3-point functions would render the analysis of these

interactions more complex and essentially non-local.

This point is also essential in our identification of the effective vertices of the physical

gauge bosons since, as we will discuss below, the definition of these vertices is entirely based

on the possibility of parameterizing the anomalous effective action, at the same time, in

– 7 –
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the interaction basis and in the mass eigenstate basis. We need these mixing terms to

disappear in both cases. This happens, as we are going to show, if both in the Stückeberg

phase and in the HS phase we perform a gauge choice of Rξ type (we will choose ξ = 1).

These technical points are easier to analyze in a simple abelian model, following the lines

of [6]. In this model the B is a vector-axial vector (V − A) anomalous gauge boson and A

is vector-like and anomaly-free.

We will show that in this model we can fix the counterterms in the first phase, having

removed the b-B mixing and then proceed to determine the effective action in the HS

phase, with its STI’s which continue to be valid also in this phase.

Let’s illustrate this point in some detail. We recall that for an ordinary (non abelian)

gauge theory in the exact (non-broken) phase the derivation of the conditions of BRST

invariance follow from the well known BRST variations in the Rξ gauge

δBRST Aa
µ ≡ sAa

µ = ωDab
µ cb (2.1)

δBRST ca ≡ sca = −
1

2
ωgfabccbcc (2.2)

δBRST c̄ a ≡ sc̄ a =
ω

ξ
∂µAµ a. (2.3)

These involve the nonabelian gauge field Aa
µ, the ghost (ca) and antighost (c̄a) fields, with

ω being a Grassmann parameter. We will be interested in trilinear correlators whose STI’s

are arrested at 1-loop level and which involve anomalous diagrams. For instance we could

use the invariance of a specific correlator (c̄AA ) under a BRST transformation in order to

obtain the generalized WI’s for trilinear gauge interactions

s ⟨0|T c̄a(x)Ab
ν(y)Ac

ρ(z)|0⟩ = 0. (2.4)

These are obtained from the relations (2.3) rather straightforwardly

s ⟨0|T c̄a(x)Ab
ν(y)Ac

ρ(z)|0⟩ = ⟨0|T (sc̄a(x))Ab
ν(y)Ac

ρ(z)|0⟩ +

+⟨0|T c̄a(x)(sAb
ν(y))Ac

ρ(z)|0⟩ + ⟨0|T c̄a(x)Ab
ν(y)(sAc

ρ(z))|0⟩
= 0. (2.5)

In fact, by using eq. (2.1) and (2.3) we obtain

s ⟨0|T c̄a(x)Ab
ν(y)Ac

ρ(z)|0⟩=
1

ξ
⟨0|T ω∂µAµ aAb

ν(y)Ac
ρ(z)|0⟩ +

+⟨0|T c̄a(x)ωDbl
ν cl(y)Ac

ρ(z)|0⟩ + ⟨0|T c̄a(x)Ab
ν(y)ωDcm

ρ cm(z)|0⟩
= 0. (2.6)

Choosing ξ = 1 we get

∂

∂xµ
⟨0|T Aµ a(x)Ab

ν(y)Ac
ρ(z)|0⟩

+⟨0|T c̄a(x)[δbl∂ν − gf bldAν d(y)]cl(y)Ac
ρ(z)|0⟩

+⟨0|T c̄a(x)Ab
ν(y)[δcm∂ρ − gf cmrAρ r(z)]cm(z)|0⟩ = 0.

(2.7)
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xAµ a

Ab
ν

y

Ac
ρ

z

Ac
ρ

z

cb

x
y

ca−
= 0

x

Ab
ν

y

cc

z

ca−d
dzρ

d
dyν

d
dxµ

Figure 2: Graphical representation of eq. (2.8) at any perturbative order.

The two fields Aν d(y)cl(y) e Aρ r(z)cm(z) on the same spacetime point do not contribute

on-shell and integrating by parts on the second and third term we obtain

∂

∂xµ
⟨0|T Aµ aAb

ν(y)Ac
ρ(z)|0⟩−

∂

∂yν
⟨0|T c̄a(x)cb(y)Ac

ρ(z)|0⟩−
∂

∂zρ
⟨0|T c̄a(x)Ab

ν(y)cc(z)|0⟩=0,

(2.8)

which is described diagrammatically in figure 2. Let’s now focus our attention on the A-B

model of [6] where we have an anomalous generator YB . This model describes quite well

many of the properties of the abelian sector of the general model discussed in [7] with a

single anomalous U(1). It is an ordinary gauge theory of the form U(1)A × U(1)B with B

made massive at tree level by the Stückelberg term

LSt =
1

2
(∂µb + M1Bµ)2. (2.9)

This term introduces a mixing M1Bµ∂µb which signals the presence of a broken phase in

the theory. Introducing the gauge fixing lagrangean

Lgf = −
1

2ξB
(FS

B [Bµ])2, (2.10)

FS
B [Bµ] ≡ ∂µBµ − ξBM1b, (2.11)

we obtain the partial contributions (mass term plus gauge fixing term) to the total action

LSt + Lgf =
1

2

[

(∂µb)2 + M2
1 BµBµ − (∂µBµ)2 − ξBM2

1 b2

]

(2.12)

and the corresponding Faddeev-Popov lagrangean

LFP = c̄B
δFB

δθB
cB = c̄B

[

∂µ
δBµ

δθB
− ξBM1

δb

δθB

]

cB , (2.13)

with cB and c̄B are the anticommuting ghost/antighosts fields. It can be written as

LFP = c̄B (! + ξBM2
1 ) cB , (2.14)

having used the shift of the axion under a gauge transformation

δb = −M1θ. (2.15)

– 9 –
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In the following we will choose ξB = 1. The anomalous sector is described by

San = S1 + S3

S1 =

∫

dx dy dz

(

gB g2
A

2!
T λµν
AVV

(x, y, z)Bλ(z)Aµ(x)Aν(y)

)

S3 =

∫

dx dy dz

(

g3
B

3!
T λµν
AAA

(x, y, z)Bλ(z)Bµ(x)Bν(y)

)

, (2.16)

where we have collected all the anomalous diagrams of the form (AVV and AAA) and

whose gauge variations are

1

2!
δB [TAVVBAA] =

i

2!
a3(β)

1

4
[FA ∧ FAθB]

1

3!
δB [TAAABBB] =

i

3!

an

3

3

4
⟨FB ∧ FBθB⟩, (2.17)

having left open the choice over the parameterization of the loop momentum, denoted by

the presence of the arbitrary parameter β with

a3(β) = −
i

4π2
+

i

2π2
β a3 ≡

an

3
= −

i

6π2
, (2.18)

while

1

2!
δA [TAVVBAA] =

i

2!
a1(β)

2

4
[FB ∧ FAθA] . (2.19)

We have the following equations for the anomalous variations

δBLan =
igBg 2

A

2!
a3(β)

1

4
FA ∧ FAθB +

ig 3
B

3!

an

3

3

4
FB ∧ FBθB

δALan =
igBg 2

A

2!
a1(β)

2

4
FB ∧ FAθA, (2.20)

while Lb,c, the axionic contributions (Wess-Zumino terms), needed to restore the gauge

symmetry violated at 1-loop level, are given by

Lb =
CAA

M
bFA ∧ FA +

CBB

M
bFB ∧ FB . (2.21)

The gauge invariance on A requires that β = −1/2 ≡ β0 and is equivalent to a vec-

tor current conservation (CVC) condition. By imposing gauge invariance under B gauge

transformations, on the other hand, we obtain

δB (Lb + Lan) = 0 (2.22)

which implies that

CAA =
i gBg 2

A

2!

1

4
a3(β0)

M

M1
, CBB =

ig 3
B

3!

1

4
an

M

M1
. (2.23)

This procedure, as we are going to show, is equivalent to the imposition of the STI on the

corresponding anomalous vertices of the effective action. In fact the counterterms CAA and

CBB can be determined formally from a BRST analysis.
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i gB gA
2 kλ

k1
2

ii
k2 − M1

2 k2
2

i λ

µ

ν

B

A

A

2  M1

A

b

A

= 0

Figure 3: Representation in terms of Feynman diagrams in momentum space of the Slavnov-
Taylor identity obtained in the Stückelberg phase for the anomalous triangle BAA. Here we deal
with correlators with non-amputated external lines. A CS term has been absorbed to ensure the
conserved vector current (CVC) conditions on the A lines.

In fact, the BRST variations of the model are defined as

δBRST Bµ = ω∂µcB

δBRST b = −ωM1cB

δBRST Aµ = ω ∂µcA

δBRST cB = 0

δBRST c̄B =
ω

ξB
FS

B =
ω

ξB
(∂µBµ − ξBM1b). (2.24)

To derive constraints on the 3-linear interactions involving 2 abelian (vector-like) and one

vector-axial vector gauge field, that we will encounter in our analysis below, we require the

BRST invariance of a specific correlator such as

δBRST ⟨0|T c̄B(z)Aµ(x)Aν(y)|0⟩ = 0, (2.25)

figure 5 shows the difference between the non-amputated and the amputated correlators,

and applying the BRST operator we obtain

ω

ξB
⟨0|T [∂λBλ(z)−ξBM1b(z)]Aµ(x)Aν(y)|0⟩ + ⟨0|T c̄B(z)ω∂µcA(x)Aν(y)|0⟩

+ ⟨0|T c̄B(z)Aµ(x)ω∂νcA(y)|0⟩ = 0, (2.26)

with the last two terms being trivially zero. Choosing ξB = 1 we obtain the STI (see figure

3) involving only the WZ term and the anomalous triangle diagram BAA. This reads

∂

∂zλ
⟨0|T Bλ(z)Aµ(x)Aν(y)|0⟩ − M1⟨0|T b(z)Aµ(x)Aν(y)|0⟩ = 0. (2.27)

A similar STI holds for the BBB vertex and its counterterm

∂

∂zλ
⟨0|T Bλ(z)Bµ(x)Bν(y)|0⟩ − M1⟨0|T b(z)Bµ(x)Bν(y)|0⟩ = 0. (2.28)

These two equations can be rendered explicit. For instance, to extract from (2.27) the

corresponding expression in momentum space and the constraint on CAA, we work at the

lowest order in the perturbative expansion obtaining

1

2!

∂

∂zλ
⟨0|T Bλ(z)Aµ(x)Aν(y) [J5B] [JA]2 |0⟩−M1⟨0|T b(z)Aµ(x)Aν(y) [bFA ∧ FA] |0⟩ = 0,

(2.29)
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where we have introduced the notation [ ] to denote the spacetime integration of the vector

(J) and axial current (J5) to their corresponding gauge fields

J A = −gAψ̄γ
µψAµ, (2.30)

J5 B = −gBψ̄γ
µγ5ψBµ (2.31)

J̃5 GB = 2igB
mf

MB
ψ̄γ5ψGB , (2.32)

where MB is the mass of the B gauge boson in the Higgs-Stückelberg phase that we will

analyze in the next sections.

In momentum space this STI represented in figure 3 becomes (ξB = 1)

1

2!
2
[

ikλ′

]

[

−
igλλ′

k2 − M2
1

] [

−
igµµ′

k2
1

] [

−
igνν′

k2
2

]

[

−gBg2
A

]

∆λµν(k1, k2)

−2M1

[

i

k2 − M2
1

] [

−
igµµ′

k2
1

] [

−
igνν′

k2
2

]

V µν
A (k1, k2) = 0, (2.33)

where the factor 1
2! comes from the presence in the effective action of a diagram with

2 identical external lines, in this case two A gauge bosons, and the factor 2, present in

both terms, comes from the contraction with the external fields. Using in (2.33) the

corresponding anomaly equation

kλ∆λµν(k1, k2) = a3(β0)ϵ
µναβk1αk2β (2.34)

and the expression of the vertex V µν
A (k1, k2)

V µν
A (k1, k2) =

4CAA

M
ϵµναβk1αk2β (2.35)

we obtain

[

i

k2 − M2
1

] [

−
igµµ′

k2
1

] [

−
igνν′

k2
2

] [

i gBg2
Aa3(β0)ϵ

µναβk1αk2β − 2M1
4CAA

M
ϵµναβk1αk2β

]

= 0,

(2.36)

from which we get

i gBg2
Aa3(β0) = 2M1

4CAA

M
⇒ CAA =

i gBg 2
A

2

1

4
a3(β0)

M

M1
. (2.37)

This condition determines CAA at the same value as before in (2.25), using the constraints

of gauge invariance, having brought the anomaly on the B vertex (β0 = −1/2).

In the case of the second STI given in (2.28), expanding this equation at the lowest

relevant order we get

1

3!

∂

∂zλ
⟨0|T Bλ(z)Bµ(x)Bν(y) [J5B]3 |0⟩−M1⟨0|T b(z)Bµ(x)Bν(y) [bFB ∧ FB ] |0⟩ = 0. (2.38)
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Also in this case, setting ξB = 1, we re-express (2.38) as

1

3!
3!
[

ikλ′

]

[

−
igλλ′

k2 − M2
1

] [

−
igµµ′

k2
1 − M2

1

] [

−
igνν′

k2
2 − M2

1

]

[

−g3
B

]

∆λµν(k1, k2)

−2M1

[

i

k2 − M2
1

] [

−
igµµ′

k2
1 − M2

1

] [

−
igνν′

k2
2 − M2

1

]

V µν
B (k1, k2) = 0, (2.39)

where, similarly to BAA, the factor 1
3! comes from the 3 identical gauge B bosons on the

external lines, the coefficient 3! in the first term counts all the contractions between the

vertex ∆λµν and the propagators of the B gauge bosons, while the coefficient 2 comes from

the contractions of V µν
B with the external lines. From eq. (2.39) we get

[

i

k2 − M2
1

] [

−
igµµ′

k2
1 − M2

1

] [

−
igνν′

k2
2 − M2

1

] [

ig3
B kλ∆λµν(k1, k2)−2M1V

µν
B (k1, k2)

]

=0. (2.40)

as depicted in figure 6.

The anomaly equation for BBB distributes the total anomaly an equally among the

three B vertices, therefore

kλ∆λµν(k1, k2) =
an

3
ϵµναβk1αk2β , (2.41)

and for the V µν
B (k1, k2) vertex we have

V µν
B (k1, k2) =

4CBB

M
ϵµναβk1αk2β . (2.42)

Inserting (2.41), (2.42) into (2.40) we obtain

i g3
B

an

3
= 2M1

4CBB

M
⇒ CBB =

i g3
B

2

1

4

an

3

M

M1
, (2.43)

in agreement with (2.25). Therefore we have shown that if we gauge-fix the effective la-

grangean in the Sẗuckelberg phase to remove the b-B mixing and fix the CS counterterms so

that the anomalous variations of the trilinear vertices are absent, we are actually imposing

generalized Ward identities or STI’s on the effective action. On this gauge-fixed axion the

b-B mixing is completely absent also off-shell and the structure of the trilinear vertices is

rather simple. We need to check that these STI’s are compatible with those obtained after

electroweak symmetry breaking, so that the mixing is absent off-shell also in the physical

basis.

2.1 The Higgs-Stückelberg phase (HS)

Now consider the same effective action of the previous model after electroweak symmetry

breaking. If we interpret the gauge-fixed action derived above as a completely determined

theory where the counterterms have been found by the procedure that we have just illus-

trated, once we expand the fields around the Higgs vacuum we encounter a new mixing of

the goldstones with the gauge fields. Due to Higgs-axion mixing [6] the goldstones of this

theory are extracted by a suitable rotation that allows to separate physical from unphysical
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ν

B

A

A

i gB gA
2 kλ
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i
k1

2
ii

k2 − MB
2

2  MB

A

GB

A

2  MB gB gA
2

µ

ν

GB

A

A

Figure 4: Diagrammatic representation of eq. (2.47) in the HS phase, determining the counterterm
CAA. A CS term has been absorbed by the CVC conditions on the A gauge boson.

degrees of freedom. In fact the Stückelberg is decomposed into a physical axi-Higgs and

a genuine goldstone. It is then natural to ask whether we could have just worked out the

lagrangean directly in this phase by keeping the coefficients in front of the counterterms of

the theory free, and had them fixed by imposing directly generalized WI’s in this phase,

bypassing completely the first construction. As we are now going to show in this model the

counterterms are determined consistently also in this case at the same values given before.

Let’s see how this happens. In this phase the mixing that needs to be eliminated is

of the form Bµ∂µGB , where GB is the goldstone of the HS phase. In this case we use the

gauge-fixing lagrangean

Lgf = −
1

2ξB
(FH

B )2 = −
1

2ξB
(∂µBµ − ξBMBGB) , (2.44)

and the BRST transformation of the antighost field c̄B is given by

δBRST c̄B =
ω

ξB
FH

B =
ω

ξB
(∂µBµ − ξBMBGB) . (2.45)

Also in this case we use the 3-point function in eq. (2.25) and ξB = 1 to obtain the STI

∂

∂zλ
⟨0|T Bλ(z)Aµ(x)Aν(y)|0⟩ − MB⟨0|T GB(z)Aµ(x)Aν(y)|0⟩ = 0. (2.46)

To get insight into this equation we expand perturbatively (2.46) and obtain

1

2!

∂

∂zλ
⟨0|T Bλ(z)Aµ(x)Aν(y) [J5B] [JA]2 |0⟩

−MB ⟨0|T GB(z)Aµ(x)Aν(y) [GBFA ∧ FA] |0⟩

−MB ⟨0|T GB(z)Aµ(x)Aν(y)
[

J̃5GB

]

[JA]2 |0⟩ = 0, (2.47)

where the first term is the usual triangle diagram with the BAA gauge bosons on the

external lines, the second is a WZ vertex with GB on the exernal line and the third term,

which is absent in the Stückelberg phase, is a triangle diagram involving the GB gauge
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B
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A

B

A

A

A

b

A

A

b

A

= k2 − M1
2 k1

2 k2
2

= i
k2 − M1

2 k1
2 k2

2

− i − i − i

− i − i

Figure 5: Relation between a correlator with non amputated external lines (left) used in an STI
and an amputated one (right) used in the effective action for a triangle vertex and for a CS term.

= 0

B

b

B

2  M1
λ

µ

ν

B

B

B

i gB 3 kλi
k1

2 − M1
2

i
k2

2 − M1
2

i
k2 − M1

2

Figure 6: Diagrammatic representation of (2.40) in the Stückelberg phase, determining the coun-
terterm CBB.

boson that couples to the fermions by a Yukawa coupling (see figure 4). In the Stückelberg

phase there is no analogue of this third contribution in the cancellation of the anomalies

for this vertex, since b does not couple to the fermions.

Notice that the STI contains now a vertex derived from the bFA∧FA counterterm, but

projected on the interaction GBFA∧FA via the factor M1/MB . This factor is generated by

the rotation matrix that allows the change of variables (φ2, b) → (χB , GB) and is given by

U =

(

− cos θB sin θB

sin θB cos θB

)

(2.48)

with θB = arccos(M1/MB) = arcsin(qBgBv/MB). We recall [6] that the axion b can be

expressed as linear combination of the rotated χ and GB of the form

b = α1χB + α2GB =
qBgBv

MB
χB +

M1

MB
GB , (2.49)

χ and GB of the form its mass MB through the combined Higgs-Stückelberg mechanism

MB =
√

M2
1 + (qBgBv)2. (2.50)
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Now we express the STI given in (2.46) choosing ξB = 1

1

2!
2
[

ikλ′

]

[

−
igλλ′

k2 − M2
B

] [

−
igµµ′

k2
1

] [

−
igνν′

k2
2

]

[

−gBg2
A

]

∆λµν(mf , k1, k2)

−MB

[

i

k2 − M2
B

] [

−
igµµ′

k2
1

] [

−
igνν′

k2
2

] {

2
M1

MB
V µν

A (k1, k2)

+
1

2!
2 i gBg2

A

(

2i
mf

MB

)

∆µν
GBAA(mf , k1, k2)

}

= 0, (2.51)

where the [GBFA ∧ FA] interaction has been obtained from the [bFA ∧ FA] vertex by pro-

jecting the b field on the field GB , and the coefficient 2imf/MB comes from the coupling of

GB with the massive fermions [6]. The remaining coefficient M1/MB rotates the V µν
A (k1, k2)

vertex as in eq. (2.51).

Replacing in (2.51) the WI obtained for a massive AVV vertex

kλ∆λµν(β,mf , k1, k2) = a3(β)εµναβkα
1 kβ

2 + 2mf∆µν(mf , k1, k2) (2.52)

where

∆µν(mf , k1, k2) = mfε
αβµνk1,αk2,β

(

1

2π2

)

I(mf )

I(mf ) ≡ −
∫ 1

0

∫ 1−x

0
dxdy

1

m2
f + (x − 1)xk2

1 + (y − 1)yk2
2 − 2xyk1 · k2

(2.53)

and the expression for the V µν
A (k1, k2) vertex

V µν
A (k1, k2) =

4CAA

M
ϵµναβk1αk2β, (2.54)

we get

[

igλλ′

k2 − M2
B

] [

igµµ′

k2
1

] [

igνν′

k2
2

] {

i gBg2
A a3(β0) ϵ

µναβk1αk2β

+2 i gBg2
A mf ∆µν(mf , k1, k2) − 2MB

4CAA

M
ϵµναβk1αk2β

−2 igBg2
A MB

mf

MB
∆µν

GBAA(mf , k1, k2)

}

= 0. (2.55)

Since ∆µν
GBAA = ∆µν , eq. (2.55) yields the same condition obtained by fixing CAA in the

Stückelberg phase, that is

i gBg2
Aa3(β0) = 2M1

4CAA

M
⇒ CAA =

i gBg 2
A

2

1

4
a3(β0)

M

M1
. (2.56)

A similar STI can be derived for the BBB vertex in this phase, obtaining

∂

∂zλ
⟨0|T Bλ(z)Bµ(x)Bν(y)|0⟩ − MB⟨0|T GB(z)Bµ(x)Bν(y)|0⟩ = 0. (2.57)
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Expanding perturbatively (2.57) we obtain

1

3!

∂

∂zλ
⟨0|T Bλ(z)Bµ(x)Bν(y) [J5B]3 |0⟩

−MB ⟨0|T GB(z)Bµ(x)Bν(y) [GBFB ∧ FB ] |0⟩

−MB ⟨0|T GB(z)Bµ(x)Bν(y)
[

J̃5GB

]

[J5B]2 |0⟩ = 0, (2.58)

that gives

1

3!
3!
[

ikλ′

]

[

−
igλλ′

k2 − M2
B

] [

−
igµµ′

k2
1 − M2

B

] [

−
igνν′

k2
2 − M2

B

]

[

−g3
B

]

∆λµν(mf , k1, k2)

−MB

[

i

k2 − M2
B

] [

−
igµµ′

k2
1 − M2

B

] [

−
igνν′

k2
2 − M2

B

] {

2
M1

MB
V µν

B (k1, k2)

+
1

2!
2 i g3

B

(

2i
mf

MB

)

∆µν
GBBB(mf , k1, k2)

}

= 0,

(2.59)

where we have defined

∆µν
GBBB =

∫

d4q

(2π)4
Tr
[

γ5(q/ − k/ + mf )γνγ5(q/ − k1/ + mf )γµγ5(q/ + mf )
]

[

q2 − m2
f

] [

(q − k)2 − m2
f

] [

(q − k1)2 − m2
f

]

+ {µ ↔ ν, k1 ↔ k2} . (2.60)

Since this contribution is finite, it gives

∆µν
GBBB = 2

∫

d4q

(2π)4

∫ 1

0

∫ 1−x

0
dxdy

2m4iεµναβk1,αk2,β
[

q2 − k2
2(y − 1)y − k2

1(x − 1)x + 2xy − m2
f

]3 (2.61)

and we obtain again

∆µν
GBBB = ∆µν = εαβµνk1,αk2,βmf

(

1

2π2

)

I(mf ) , (2.62)

Using the anomaly equations in the chirally broken phase

kλ∆λµν
3 (k1, k2) =

an

3
εµναβkα

1 kβ
2 + 2mf∆µν (2.63)

and the expression of the vertex

V µν
B (k1, k2) =

4CBB

M
ϵµναβk1αk2β , (2.64)

we obtain

CBB =
i g3

B

2

1

4

an

3

M

M1
. (2.65)

Expanding to the lowest nontrivial order this identity we obtain

i

(

an

3
ϵµναβk1αk2β +2mf∆µν

)

−2MB

(

4

M
CBB

M1

MB

)

ϵµναβk1αk2β−MB

(

2i
mf

MB

)

∆µν
GBBB =0

(2.66)

which can be easily solved for CBB , thereby determining CBB exactly at the same value

inferred from the Stückelberg phase, as discussed above.
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Figure 7: The anomalous effective action in the two basis in the Rξ gauge where we have eliminated
the mixings on the external lines in both basis.

2.2 Slavnov-Taylor identities and BRST symmetry in the complete model

It is obvious, from the analysis presented above, that a similar treatment is possible also in

the non-abelian case, though the explicit analysis is more complex. The objective of this

investigation, however, is by now clear: we need to connect the anomalous effective action

of the general model in the interaction basis and in the mass eigenstate basis keeping into

account that both phases are broken phases. In figure 7 this point is shown pictorially.

In both cases the bilinear mixings of the goldstones with the corresponding gauge fields,

Z∂GZ , Z ′∂G′
Z have been removed and the counterterms in the eigenstate basis have been

fixed as in [7], where, as we have just shown for the A-B model. Equivalently, we can fix

the counterterms in the HS phase by imposing the STI’s directly at this stage, thereby

defining the anomalous effective action plus WZ terms completely. For this we need the

BRST transformation of the fundamental fields. As usual, in the gauge sector these can be

obtained by replacing the gauge parameter in their gauge variations with the corresponding

ghost fields times a Grassmann parameter ω. Denoting by s the BRST operator, these are

given by

sAγ
µ = ω ∂µcγ + iOA

11 g2 ω
(

c−W+
µ − c+W−

µ

)

, (2.67)

sZµ = ω ∂µcZ + iOA
21 g2 ω

(

c−W+
µ − c+W−

µ

)

, (2.68)

sZ ′
µ = ω ∂µcZ′ + iOA

31 g2 ω
(

c−W+
µ − c+W−

µ

)

(2.69)

s W+
µ = ω ∂µc+ − ig2W

+
µ ω

(

OA
11cγ + OA

21cZ + OA
31cZ′

)

+ig2
(

OA
11Aγµ + OA

21Zµ + OA
31Z

′
µ

)

ωc+,

sW−
µ = ω∂µc− + ig2W

−
µ ω

(

OA
11cγ + OA

21cZ + OA
31cZ′

)

−ig2
(

OA
11Aγµ + OA

21Zµ + OA
31Z

′
µ

)

ωc− (2.70)

where the OA
ij are matrix elements defined exactly as in eq. (2.91) below. To determine the

transformations rules for the ghost/antighosts we recall that the gauge-fixing lagrangeans

in the Rξ gauge are given by

LZ
gf = −

1

2ξZ
F [Z,GZ ]2 = −

1

2ξZ
(∂µZµ − ξZMZGZ)2, (2.71)

LZ′

gf = −
1

2ξZ′

F [Z ′, GZ′

]2 = −
1

2ξZ′

(∂µZ ′µ − ξZ′MZ′GZ′

)2, (2.72)

LAγ

gf = −
1

2ξA
F [Aγ ]2 = −

1

2ξA
(∂µAµ

γ )2, (2.73)
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LW
gf = −

1

ξW
F [W+, G+]F [W−, G−] =

= −
1

ξW
(∂µW+µ + iξW MW G+)(∂µW−µ − iξW MW G−), (2.74)

where GZ , GZ′

, G+ e G− are the goldstones of Z, Z ′, W+ and W−.

In particular, the FP (ghost) part of the lagrangean is canonically given by

LFP = −c̄a δFa[Z, z]

δθb
cb, (2.75)

where the sum over a and b runs over the fields Z, Z ′, Aγ , W+ e W− and is explicitly

given in the appendix. For the BRST variations of the antighosts we obtain

s c̄a = −
i

ξa
ωFa a = Z,Z ′, γ,+,− (2.76)

and in particular

s c̄Z = −
i

ξZ
ω
(

∂µZµ − ξZMZGZ
)

(2.77)

s c̄Z′ = −
i

ξZ′

ω
(

∂µZ ′µ − ξZ′MZ′GZ′

)

(2.78)

s c̄γ = −
i

ξγ
ω
(

∂µAµ
γ

)

(2.79)

s c̄+ = −
i

ξW
ω
(

∂µW+µ + iξW MW G+
)

(2.80)

s c̄− = −
i

ξW
ω
(

∂µW−µ − iξW MW G−
)

, (2.81)

giving typically the STI

∂

∂zλ
⟨0|T Zλ(z)Aµ(x)Aν(y)|0⟩ − MZ⟨0|T GZ(z)Aµ(x)Aν(y)|0⟩ = 0, (2.82)

and a similar one for the Z ′ gauge boson.

We pause for a moment to emphasize the difference between this STI and the corre-

sponding one in the SM. In this latter case the structure of the STI is

kρ Gρνµ = (k1 + k2)ρ G ρνµ

=
e2g

π2 cos θW

∑

f

gf
AQ2

f ϵ
νµαβk1αk2β

[

−m2
f

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

∆

]

, (2.83)

where Gρνµ is the gauge boson vertex, which is shown pictorially in figure 8 (diagrams

a and c). Notice that the goldstone contribution is the factor in square brackets in the

expression above, being the coupling of the Goldstone proportional to m2
f/MZ . In the

chiral limit the STI of the Zγγ vertex of the Standard Model becomes an ordinary Ward
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= 0
d

dzλ
λ

µ

ν

Z

γ

γ

2 MZ 2 MZ

λ

µ

ν

GZ

γ

γ

GZ

a)

γ

γ

b) c)

Figure 8: The general STI for the Zγγ vertex in our anomalous model away from the chiral limit.
The analogous STI for the SM case consists of only diagrams a) and c).

λ

µ

νγ

γ

2 MZ

γ

γ

= 0
d
dzλ

Z GZ

a) b)

Figure 9: The STI for the Zγγ vertex for our anomalous model and in the chiral phase. The
analogous STI in the SM consists of only diagram a).

identity, as in the photon case. In figure 8 the modification due to the presence of the WZ

term is evident. In fact expanding (2.82) in the anomalous case we have

kρ Gρνµ = (k1 + k2)ρ G ρνµ

=
e2g

π2 cos θW

∑

f

gf
AQ2

f ϵ
νµαβk1αk2β

[

1

2
− m2

f

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

∆

]

, (2.84)

where the first term in the square brackets is now the WZ contribution and the second the

usual goldstone contribution, as in the SM case. Notice that the factor
∑

f gf
AQ2

f is in fact

proportional to the total chiral asymmetry of the Z vertex, which is mass independent and

appears as a factor in front of the WZ counterterm. In the chiral limit the anomalous STI

is represented in figure 9.

At this point we are ready to proceed with a more general analysis of the trilinear

gauge interactions and derive the expression of all the anomalous vertices of a given theory

in the mass eigenstate basis and away from the chiral limit. The reason for stressing this

aspect has to do with the way the chiral symmetry breaking effects appear in the SM and

in the anomalous models. In particular, we will start by extending the analysis presented

in [7] for the derivation of the Zγγ vertex, which is here presented in far more detail.

Compared to [7] we show some unobvious features of the derivation which are essential in

order to formulate general rules for the computation of these vertices. We rotate the fields

from the interaction eigenstate basis to the physical basis and the CS counterterms are

partly absorbed and the anomaly is moved from the anomaly-free gauge boson vertices to

the anomalous ones. This analysis is then extended to other trilinear vertices and we finally

provide general rules to handle these types of interactions for a generic number of U(1)’s.

Before we come to the analysis of this vertex, we recall that the neutral current sector
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of the model is defined as [7]

−LNC = ψfγ
µFψf , (2.85)

with

F = g2W
3
µT 3 + gY Y AY

µ + gBYBBµ (2.86)

expressed in the interaction eigenstate basis. Equivalently it can be re-expressed as

F = gZQZZµ + gZ′QZ′Z ′
µ + eQAγ

µ, (2.87)

where Q = T 3 +Y . The physical fields Aγ , Z, Z ′ and W3, AY , B are related by the rotation

matrix OA to the interaction eigenstates

⎛

⎝

Aγ

Z

Z ′

⎞

⎠ = OA

⎛

⎝

W3

AY

B

⎞

⎠ (2.88)

or equivalently

W 3
µ = OA

W3γAγ
µ + OA

W3ZZµ + OA
W3Z′Z ′

µ (2.89)

AY
µ = OA

Y γAγ
µ + OA

Y ZZµ + OA
Y Z′Z ′

µ (2.90)

Bµ = OA
BZZµ + OA

BZ′Z ′
µ. (2.91)

Substituting these transformations in the expression of the bosonic operator F and reading

the coefficients of the fields Zµ, Z ′
µ and Aγ

µ we obtain this set of relations for the coupling

constants and the generators in the two basis, given here in a chiral form

gZQL
Z = g2T

3LOA
W3Z + gY Y LOA

Y Z + gBY L
B OA

BZ (2.92)

gZQR
Z = gY Y ROA

Y Z + gBY R
B OA

BZ (2.93)

gZ′QL
Z′ = g2T

3LOA
W3Z′ + gY Y LOA

Y Z′ + gBY L
B OA

BZ′ (2.94)

gZ′QR
Z′ = gY Y ROA

Y Z′ + gBY R
B OA

BZ′ (2.95)

eQL = g2T
3LOA

W3A + gY Y LOA
Y A = gY Y ROA

Y A = eQR. (2.96)

3. General analysis of the Zγγ vertex

Let’s now come to a brief analysis of this vertex, stressing on the general features of its

derivation, which has not been detailed in [7]. In particular we highlight the general

approach to follow in order to derive these vertices and apply it to the case when several

anomalous U(1)’s are present. We will exploit the invariance of the anomalous part of the

effective action under transformations of the external classical fields. This is illustrated in

figure 7. More formally we can set

Wanom(B,W,AY ) = Wanom(Z,Z ′, Aγ) (3.1)

where we limit our analysis to the anomalous contributions.
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Y
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W3
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W3

b

Y

Y

b

W3

W3

B

Y

Y

B

B b

Y

Y

W3

W3

B b

Figure 10: All the triangle diagrams and the possible CS, WZ and GS counterterms present in
the model (chiral phase). Not all these diagrams project on Z → γγ in the mass eigenstate basis.

B

W3

W3

+

W3

W3

B
=

B

W3

W3

Figure 11: The routing of the anomaly and the absorption of the CS term into the anomalous B
gauge boson. The anomaly is distributed among the vertices with the black dot.

The triangle diagrams projecting on this vertex are the following: Y Y Y , Y W3W3,

BY Y and BW3W3. They are represented in figure 10, where we have added the corre-

sponding counterterms.

The first two are SM-like and hence anomaly-free by charge assignment. The diagrams

involving the B gauge boson are typical of these models, are anomalous, and require suitable

counterterms in order to cancel their anomalies. All the possible counterterms are shown

in figure 10. The WZ terms of the form bY Y or bW3W3 will project both on a GZγγ and

a χγγ interactions, the first one being relevant for the STI of the vertex. The main issue

to be addressed is that of the distribution of the anomaly among the triangular vertices.

These points have been discussed in [6] and [7] working in the chiral limit, when the fermion

masses are removed from the diagrams.

The procedure can follow, equivalently, two directions: we can start from the BY W3

basis and project onto the vertices Zγγ, ZZγ. . . , rotating the fields (not the charges) or,

equivalently, start from the Z,Z ′γ basis and rotate the charges (but not the fields) and

the generators onto the interaction eigenstate basis BY W3. We obtain two equivalent

descriptions of the various vertices. In the interaction basis the CS terms are absorbed and

the anomaly is moved from the Y or W vertices into the B vertex, where it is cancelled

by the axion (see figure 11). This is the meaning of the STI’s shown above. Therefore it
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Figure 12: Chiral decomposition of the fermionic propagator after a mass insertion.

is clear that most of the CS terms do not appear explicitly if we use this approach. On

the other hand, if we work in the mass eigenstate basis they can be kept explicit, but one

has to be careful because in this case also the remaining vertices containing the generator

of the electric charge Q ∼ Y + T3 have partial anomalies. The two approaches, as we are

going to see, can be combined in a very economical way for some vertices, for instance for

the Zγγ vertex, where one can attach all the anomaly to the Z gauge boson and add only

the GZγγ counterterm. Similarly, for other interactions such as the ZZγ vertex, the total

anomaly has to be equally distributed between the two Z ′s, since only the B generator

carries an anomaly in the chiral limit, if we absorb the CS terms. For other vertices such

as ZZZ ′ etc, all the vertices contribute to the total anomaly and their partial contributions

can be identified by decomposing the corresponding triangle in the Y BW3 basis wih some

CS terms left over.

4. The ⟨Zlγγ⟩ vertex

In this section we begin our technical discussion of the method. Since the most general

case is encountered when at least 3 anomalous U(1)’s are present in the theory, we will

consider for definiteness a model with three of them, say Bj = {B1, B2, B3}. We can write

the field transformation from interaction eigenstates basis to the mass eigenstates basis as

W3 = OA
W3γAγ +

3
∑

l=0

OA
W3Zl

Zl

Y = OA
Y γAγ +

3
∑

l=0

OA
Y Zl

Zl

Bj = OA
BjγAγ +

3
∑

l=0

OA
BjZl

Zl, (4.1)

with j = 1, 2, 3 and where for l = 0 we have the Z0 belonging to the SM and Z1, Z2, Z3 are

the anomalous ones. As in [7] we rotate the external field of the anomalous interactions

from one base to the other, selecting the projections over the Zlγγ vertex (the ellipsis

indicate additional contributions that have no projection on the vertex that we consider)

1

3!
Tr
[

Q3
Y

]

⟨Y Y Y ⟩ =
1

3!
Tr
[

Q3
Y

]

RY Y Y
Zlγγ ⟨Zlγγ⟩ + . . .

1

2!
Tr
[

QY T 2
3

]

⟨Y WW ⟩ =
1

2!
Tr
[

QY T 2
3

]

RY WW
Zlγγ ⟨Zlγγ⟩ + . . .

1

2!
Tr
[

QBjQ
2
Y

]

⟨BjY Y ⟩ =
1

2!
Tr
[

QBjQ
2
Y

]

R
BjY Y
Zlγγ ⟨Zlγγ⟩ + . . .

1

2!
Tr
[

QBjT
2
3

]

⟨BjWW ⟩ =
1

2!
Tr
[

QBjT
2
3

]

R
BjWW
Zlγγ ⟨Zlγγ⟩ + . . . (4.2)
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where the rotation coefficients RY Y Y
Zlγγ , RY WW

Zlγγ , RBiY Y
Zlγγ , RBiWW

Zlγγ containing several products

of the elements of the rotation matrix OA are given by

RY Y Y
Zlγγ = 3

[

(OA)Y Zl
(OA)2Y γ

]

RY WW
Zlγγ =

[

2(OA)W3γ(OA)Y Zl
(OA)Y γ + (OA)2W3γ(OA)Y Zl

]

RWWW
Zlγγ =

[

3(OA)BiZl
(OA)2W3γ

]

RY Y W
Zlγγ =

[

2(OA)Y Zl
(OA)Y γ(OA)W3γ + (OA)W3Zl

(OA)2Y γ

]

RBiY Y
Zlγγ = (OA)2Y γ(OA)BiZl

RBiWW
Zlγγ =

[

(OA)2W3γ(OA)BiZl

]

RBiY W
Zlγγ =

[

2(OA)BiZl
(OA)W3γ(OA)Y γ

]

. (4.3)

It is important to note that in the chiral phase the Y Y Y and Y WW contributions vanish

because of the SM charge assignment. As we move to the mf ̸= 0 phase we must include

(together with Y Y Y and Y WW ) the other contributions listed below

1

3!
Tr
[

Q3
W

]

⟨WWW ⟩ =
1

3!
Tr
[

T 3
3

]

RWWW
Zlγγ ⟨Zlγγ⟩ + . . .

T r
[

QBjQY T3
]

⟨BjY W ⟩ = Tr
[

QBjQY T3
]

R
BjY W
Zlγγ ⟨Zlγγ⟩ + . . .

1

2!
Tr
[

Q2
Y T3

]

⟨Y Y W ⟩ =
1

2!
Tr
[

Q2
Y T3

]

RY Y W
Zlγγ ⟨Zlγγ⟩ + . . . (4.4)

More details on the approach will be given below. For the moment we just mention

that the structure of the CS term can be computed by rotating the WZ counterterms into

the physical basis, having started with a symmetric distribution of the anomaly in all the

triangle diagrams. The CS terms in this case take the form

VCS =
an

3
ελµνα(k1,α−k2,α)

1

8

∑

j

∑

f

[

gBjg
2
Y θ

BjY Y
f R

BjY Y
Zlγγ +gBjg

2
2θ

BjWW
f R

BjWW
Zlγγ

]

Zλ
l Aµ

γAν
γ ,

(4.5)

and they are rotated into the physical basis together with the anomalous interactions [7].

We have defined the following chiral asymmetries

θ
BjY Y
f = QL

Bj ,f (QL
Y,f )2 − QR

Bj ,f (QR
Y,f )2

θ
BjWW
f = QL

Bj ,f (T 3
L,f )2 . (4.6)

We can show that the equations of the vertex in the momentum space can be obtained

following a procedure similar respect to the case of a single U(1) [7], that we are now going

to generalize. In particular we will try to absorb all the CS terms that we can, getting

as close as possible to the SM result. This is in general possible for diagrams that have

specific Bose symmetries or conserved electromagnetic currents, but some of the details of

this construction are quite subtle especially as we move away from the chiral limit.
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Figure 13: Chiral triangles contribution to the Y Y Y vertex. The same decomposition holds for
the BiY Y case.

4.1 Decomposition in the interaction basis and in the mass eigenstates basis of

the Zlγγ vertex

As we have mentioned, the anomalous effective action, composed of the triangle diagrams

plus its CS counterterms can be expressed either in the base of the mass eigenstates or in

that of the interaction eigenstates.

We start by keeping all the pieces of the 1-loop effective action in the interaction basis

in the mf ̸= 0 phase and rotate the external (classical) fields on the physical basis taking

all the contribution to the ⟨Zlγγ⟩ vertex. A given vertex is first decomposed into its chiral

contributions and then rotated into the physical gauge boson eigenstates. For instance,

let’s start with the non anomalous Y Y Y vertex see figures 12 and 13. Actually, in this

specific case the sums over each fermion generation are actually zero in the chiral limit, but

we will impose this condition at the end and prefer to follow the general treatment as for

other (anomalous) vertices. We write this vertex in terms of chiral projectors (L/R), where

L/R ≡ 1 ∓ γ5, and the diagrams contain a massive fermion of mass mf . The structure of

the vertex is

⟨LLL⟩|mf ̸=0 =

∫

d4q

(2π)4
Tr[(q/+mf )γλPL(q/+k/ +mf )γνPL(q/+k1/ +mf )γµPL]

(q2 − m2
f )
[

(q + k)2 − m2
f

] [

(q + k1)2 − m2
f

] +exch.. (4.7)

The vertices of the form LLR, RRL, and so on, are obtained from the expression above just

by substituting the corresponding chiral projectors. Notice that for loops of fixed chirality

we have no mass contributions from the trace in the numerator and we easily derive the

identity

⟨LLL⟩|mf ̸=0 = −⟨RRR⟩|mf ̸=0. (4.8)

At this point we start decomposing each diagram in the interaction basis

⟨Y Y Y ⟩ g3
Y Tr[Q3

Y ] =
∑

f

[

g3
Y (QL

Y,f )3⟨LLL⟩λµν + g3
Y (QR

Y,f )3⟨RRR⟩λµν

+g3
Y QL

Y,f(QR
Y,f )2⟨LRR⟩λµν + g3

Y QL
Y,fQR

Y,fQL
Y,f⟨LRL⟩λµν

+g3
Y (QL

Y,f )2QR
Y,f⟨LLR⟩λµν + g3

Y QR
Y,f (QL

Y,f )2⟨RLL⟩λµν

+g3
Y QR

Y,fQL
Y,fQR

Y,f ⟨RLR⟩λµν + g3
Y (QR

Y,f )2QL
Y,f⟨RRL⟩λµν

]

×
1

8
Zλ

l Aµ
γAν

γRY Y Y
Zlγγ + . . . (4.9)
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Figure 14: Chiral triangles contribution to the Y WW vertex. The same decomposition holds for
the BiWW case.

where the factor of 1/8 comes from the chiral projectors and the dots indicate all the other

contributions of the type ZlZmγ, ZlZmZr and so on, which do not contribute to the Zlγγ

vertex. This projection contains chirality conserving and chirality flipping terms. The

two combinations which are chirally conserving are LLL and RRR while the remaining

ones need to have 2 chirality flips to be nonzero (ex. LLR or RRL) and are therefore

proportional to m2
f .

We repeat this procedure for all the other vertices in the interaction eigenstate basis

that project on the vertex in which we are interested. For instance, in the case of the

⟨Y WW ⟩ vertex the structure is simpler because the generator associated to W3 is left-

chiral (see figure 14)

⟨Y WW ⟩ gY g2
2 Tr[QY (T 3)2] =

∑

f

[

gY g2
2Q

L
Y,f(T 3

L,f )2⟨LLL⟩λµν

+gY g2
2Q

R
Y,f (T 3

L,f )2⟨RLL⟩λµν
] 1

8
Zλ

l Aµ
γAν

γRY WW
Zlγγ + . . .(4.10)

Similarly, all the pieces BiY Y and BiWW for i = 1, 2, 3, give the projections

⟨BiY Y ⟩gBg2
Y Tr[QBiQ

2
Y ]=

∑

f

[

gBig
2
Y QL

Bi,f
(QL

Y,f )2⟨LLL⟩λµν+gBig
2
Y QR

Bi,f
(QR

Y,f )2⟨RRR⟩λµν

+gBig
2
Y QL

Bi,f
(QR

Y,f )2⟨LRR⟩λµν + gBig
2
Y QL

Bi,f
QR

Y,fQL
Y,f ⟨LRL⟩λµν

+gBig
2
Y QL

Bi,f
QL

Y,fQR
Y,f ⟨LLR⟩λµν + gBig

2
Y QR

Y,f (QL
Y,f )2⟨RLL⟩λµν

+gBig
2
Y QR

Bi,f
QL

Y,fQR
Y,f ⟨RLR⟩λµν + gBig

2
Y QR

Bi,f
QR

Y,fQL
Y,f ⟨RRL⟩λµν

]

×
1

8
Zλ

l Aµ
γAν

γRBiY Y + . . . (4.11)

and

⟨BiWW ⟩ gY g2
2 Tr[QBi(T

3)2] =
∑

f

[

gBig
2
2Q

L
Bi,f

(T 3
L,f )2⟨LLL⟩λµν

+gBig
2
2QR

Bi,f
(T 3

L,f )2⟨RLL⟩λµν
] 1

8
Zλ

l Aµ
γAν

γRBiWW
Zlγγ + . . .

(4.12)

We obtain similar expressions for the terms WWW , Y Y W , BiY W , etc. which appear in

the mf ̸= 0 phase.
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4.1.1 The mf = 0 phase

To proceed with the analysis of the amplitude we start from the chirally symmetric phase

(mf = 0). The terms of mixed chirality (such as ⟨LRR⟩ and so on) vanish in this limit,

leaving only the chiral preserving interactions LLL and RRR. In this limit we can formally

impose the relation

⟨LLL⟩λµν(mf = 0) = −4∆AAA(0) (4.13)

that will be used extensively in all the work. This relation or other similar relations are

just the starting point of the entire construction. The final expressions of the anomalous

vertices are obtained using the generalized Ward identities of the theory. What really

defines the theories are the distribution of the partial anomalies. We will attach an equal

anomaly on each axial-vector vertex in diagrams of the form AAA and we will compensate

this equal distribution with additional CS interactions - so to bring these diagrams to the

desired form AV V or V AV or V V A - whenever a non anomalous U(1) appears at a given

vertex. For models where a single anomalous U(1) is present this does not bring in any

ambiguity. For instance, conservation of the Y current in BiY Y will allow us to move the

anomaly from the Y ’s to the Bi vertices and this is implicitly done using a CS term. We

say that this procedure is allowing us to absorb a CS interaction. Moving to the Y Y Y

vertex, this vanishes identically in the chiral limit since we factorize left- and right-handed

modes for each generation by an anomaly-free charge assignment

⟨Y Y Y ⟩g3
Y Tr[Q3

Y ] = 0, (4.14)

⟨Y WW ⟩gY g2
2Tr[QY (TL

3 )2] = 0. (4.15)

At this point we pause to show how the re-distribution of the anomaly goes in the case at

hand. We have the contribution

V BiY Y
CS = di⟨BiY ∧ FY ⟩ (4.16)

and where the BRST conditions in the Stückelberg phase give

di = −igBig
2
Y

2

3
anDBiY Y ; DBiY Y =

1

8
Tr[QBiQ

2
Y ]. (4.17)

Also these terms are projected on the vertex to give

V BiY Y
CS = di⟨BiY ∧ FY ⟩=(−i)diε

λµνα(k1α − k2α)
[

(OA)2Y γ(OA)BiZl

]

Zλ
l Aµ

γAν
γ + . . .

V BiWW
CS = ci⟨εµνρσBµ,iC

Abelian
νρσ ⟩=(−i)ciε

λµνα(k1α−k2α)
[

(OA)2W3γ(OA)BiZl

]

Zλ
l Aµ

γAν
γ + . . .

(4.18)

In general, a vertex such as BiY Y is changed into an AVV, while vertices of the form

Y BB and Y BiBj which appear in the computation of the γZZ γZlZm interactions are

changed into VAV + VVA. This procedure is summarized by the equations

∆λµν
AAA(mf = 0, k1, k2) −

an

3
ελµνα(k1,α − k2,α) = ∆λµν

AV V (mf = 0, k1, k2)
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∆µνλ
AAA(mf = 0, k2,−k) −

an

3
εµνλα(k1,α + 2k2,α) = ∆µνλ

AV V (mf = 0, k2,−k)

= ∆λµν
V AV (mf = 0, k1, k2)

∆νλµ
AAA(mf = 0,−k, k1) −

an

3
ενλµα(−2k1,α − k2,α) = ∆νλµ

AV V (mf = 0,−k, k1)

= ∆λµν
V V A(mf = 0, k1, k2)

∆λµν
AAA(mf = 0, k1, k2) +

an

6
ελµνα(k1,α − k2,α) =

1

2

[

(∆λµν
V AV (mf = 0, k1, k2) + ∆λµν

V V A(mf = 0, k1, k2)
]

,(4.19)

where the last relation can be proved in a simple way by summing the second and the

third contributions. Defining kλ
3 = −kλ, one can combine together the AAA plus the

counterterms into a unique expression for each case

Vλµν
BiY Y = 4DBiY Y gBi

g 2
Y ∆λµν

AAA
(k1, k2) + DBiY Y gBi

g 2
Y

i

π2

2

3
ϵλµνσ(k1 − k2)σ

Vµνλ
Y BiY

= 4DBiY Y gBi
g 2
Y ∆µνλ

AAA
(k2, k3) + DBiY Y gBi

g 2
Y

i

π2

2

3
ϵµνλσ(k2 − k3)σ

Vνλµ
Y Y Bi

= 4DBiY Y gBi
g 2
Y ∆νλµ

AAA
(k3, k1) + DBiY Y gBi

g 2
Y

i

π2

2

3
ϵνλµσ(k3 − k1)σ

Vλµν
Y BiBj

= 4DY BiBj
gY gBigBj ∆λµν

AAA
(k1, k2) − DY BiBj

gY gBigBj

i

π2

1

3
ϵλµνσ(k1 − k2)σ ,

(4.20)

where we have rotated them onto the Zlγγ vertex. For the non abelian case (WBiW and

WWBi), the calculation is similar, so we omit the details.

Finally the anomalous contributions plus the CS interactions are given by

⟨BiY Y ⟩|mf =0 + ⟨BiWW ⟩|mf =0 =

+gBig
2
Y

∑

f

[

QL
Bi,f

(QL
Y,f )2 − QR

Bi,f
(QR

Y,f )2
] 1

2
∆λµν

AAA(0)RBiY Y
Zlγγ Zλ

l Aµ
γAν

γ

+gBig
2
2

∑

f

QL
Bi,f

(T 3
L,f )2

1

2
∆AAA(0)λµνRBiWW

Zlγγ Zλ
l Aµ

γAν
γ

−i

[

gBig
2
Y

4

3
anDBiY Y RBiY Y

Zlγγ + gBig
2
2
4

3
anD(L)

Bi
RBiWW

Zlγγ

]

ελµνα (k1,α − k2,α)Zλ
l Aµ

γAν
γ .

(4.21)

which allows to move the anomaly on the axial current and we simply get

⟨Zlγγ⟩|mf =0 =
∑

i

gBig
2
Y

∑

f

[

QL
Bi,f

(QL
Y,f )2 − QR

Bi,f
(QR

Y,f )2
] 1

2
∆λµν

AV V (0)RBiY Y
Zlγγ Zλ

l Aµ
γAν

γ

+
∑

i

gBig
2
2

∑

f

QL
Bi,f

(T 3
L,f )2

1

2
∆λµν

AV V (0)RBiWW
Zlγγ Zλ

l Aµ
γAν

γ , (4.22)

where we transfer all the anomaly on the vertex labelled by the λ index, obtaining that

the Ward identities on the photons are satisfied.
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At this point, it is convenient to introduce the chiral asymmetry

θ
Y BiBj

f =
[

(QL
Y,f )(QL

Bi,f
)(QL

Bj ,f ) − (QR
Y,f )(QR

Bi,f
)(QR

Bj ,f )
]

(4.23)

and express the coefficients in front of the CS counterterms as follows

DBiY Y = −
1

8

∑

f

θBiY Y
f

DBiWW = −
1

8

∑

f

θBiWW
f

DY BiBj = −
1

8

∑

f

θ
Y BiBj

f . (4.24)

After some manipulations we obtain the expression of the ⟨Zlγγ⟩ vertex in the mf = 0

phase which is given by

⟨Zlγγ⟩|mf =0 = −
1

2
∆λµν

AV V (0)Zλ
l Aµ

γAν
γ

∑

i

∑

f

[

gBig
2
Y θ

BiY Y
f RBiY Y

Zlγγ + gBig
2
2θ

BiWW
f RBiWW

Zlγγ

]

,

(4.25)

where for ∆AV V (0) we write

∆AV V (0)λµν(k1, k2, 0) =
1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(0)

{ε[k1,λ, µ, ν]
[

y(y − 1)k2
2 − xyk1 · k2

]

+ε[k2,λ, µ, ν]
[

x(1 − x)k2
1 + xyk1 · k2

]

+ε[k1, k2,λ, ν] [x(x − 1)kµ
1 − xykµ

2 ]

+ε[k1, k2,λ, µ] [xykν
1 + (1 − y)ykν

2 ]} ,

∆(0) = x(x − 1)k2
1 + y(y − 1)k2

2 − 2xyk1 · k2. (4.26)

At this stage we should keep in mind that if all the external particles are on-shell,

the total amplitude vanishes because of the Landau-Yang theorem. In other words the

Zl’s can’t decay on shell into two on-shell photons. However it is possible to have two

on-shell photons if in the initial state is characterized by an anomalous process as well,

such as gluon fusion. This does not contradict the Landau-Yang theorem since the Z-pole

disappears [20] in the presence of an anomalous Z ′ exchange [20].

4.2 The mf ̸= 0 phase

Now we move to the analysis of the vertices away from the chiral limit. Also in this case

we separate the mass-dependent from the mass-dependent contributions.

4.2.1 Chirality preserving vertices

We start analyzing the vertices away from the chiral limit by separating the chiral preserv-

ing contributions from the remaining ones. The general expression of LLL is given by

⟨LLL⟩|mf ̸=0 = A1ε[k1,λ, µ, ν] + A2ε[k2,λ, µ, ν] + A3k
ν
1ε[k1, k2,λ, µ] + A4k

ν
2ε[k1, k2,λ, µ]

+A5k
µ
1 ε[k1, k2,λ, ν] + A6k

µ
2 ε[k1, k2,λ, ν] (4.27)
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where we have removed, for simplicity, the dependence on the charges and the coupling

constants.

The divergent pieces A1 and A2 are given by

A1 = 8i [I30(k1, k2) − I20(k1, k2)] k
2
1 + 16i [I11(k1, k2) − I21(k1, k2)] k1 · k2

+8i [I01(k1, k2) − I02(k1, k2) + I12(k1, k2)] k
2
2

+4i [3D10(k1, k2) − 2D00(k1, k2)] (4.28)

where

Ist(k1, k2)=

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4q

(2π)4
xsyt

[

q2−x(1−x)k2
1−y(1−y)k2

2−2xyk1 ·k2+m2
f

]3

Dst(k1, k2)=

∫ 1

0
dx

∫ 1−x

0
dy

∫

d4q

(2π)4
q2xsyt

[

q2−x(1−x)k2
1−y(1−y)k2

2−2xyk1 ·k2+m2
f

]3 (4.29)

and one can verify that A1(k1, k2) = −A2(k2, k1). All the mass dependence is contained

only in the denominators of the propagators appearing in the Feynman parametrization.

The finite pieces A3 . . . A6 are the following

A3(k1, k2) = −16iI11(k1, k2) = −A6(k2, k1)

A4(k1, k2) = 16i [I02(k1, k2) − I01(k1, k2)] = −A5(k2, k1) (4.30)

where still we need to perform the trivial finite integrals over the momentum q.

The decomposition of ⟨LLL⟩f into massless and massive components gives

⟨LLL⟩f = ⟨LLL(mf ̸= 0)⟩ − ⟨LLL⟩(0)
⟨LLL⟩(0) = ⟨LLL(mf = 0)⟩

⟨LLL(mf ̸= 0)⟩ = ⟨LLL⟩f + ⟨LLL⟩(0), (4.31)

where we have isolated the massless contributions. As we have seen before, the CS terms

acts only on the massless part of the triangle (having used eq. (4.13)) and reproduce the

massless contribution calculated in eq. (4.25). Since the mass terms are proportional to

the tensors ε[k1,λ, µ, ν] and ε[k2,λ, µ, ν] they can be included in the singular structures A1

and A2 of ⟨LLL⟩|mf ̸=0

Ā1 = A1 + im2
f (QR

Y,f )2(QL
Y,f )

[

−8I00(q
2, k1, k2) + 24I10(q

2, k1, k2)
]

+im2
f (QL

Y,f )2(QR
Y,f )

[

8I00(q
2, k1, k2) − 24I10(q

2, k1, k2)
]

−8im2
fQR

Y,f (TL
3,f )2I10(q

2, k1, k2)

−im2
f

∑

i

QR
Bi,f

QL
Y,fQR

Y,f

[

8I10(q
2, k1, k2) + 4I00(q

2, k1, k2)
]

+im2
f

∑

i

QL
Bi,f

QR
Y,fQL

Y,f

[

8I10(q
2, k1, k2) + 4I00(q

2, k1, k2)
]

−8im2
f

∑

i

QR
Bi,f

(QL
Y,f )2I10(q

2, k1, k2) + 8im2
f

∑

i

QL
Bi,f

(QR
Y,f )2I10(q

2, k1, k2)

−8im2
f

∑

i

QR
Bi,f

(TL
3,f )2I10(q

2, k1, k2). (4.32)
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At this point we have to consider also the chirality flipping terms. For simplicity we

discuss only the case of the Y Y Y vertex, the others being similar.

4.2.2 Chirality flipping vertices

These contributions are extracted rather straighforwardly and contribute to the total vertex

amplitude with mass corrections that modify A1 and A2. We discuss this point first for

the ⟨Y Y Y ⟩, and then quote the result for the entire contribution to Zγγ.

For YYY we obtain

(QR
Y,f )2(QL

Y,f ) [⟨RRL⟩ + ⟨LRR⟩ + ⟨RLR⟩] =

(QR
Y,f )2(QL

Y,f )
[

8im2
fI00(k1, k2) (ε[k2,λ, µ, ν] − ε[k1,λ, µ, ν])

+24im2
f (I10(k1, k2)ε[k1,λ, µ, ν] − I01(k1, k2)ε[k2,λ, µ, ν])

]

, (4.33)

and the analysis can be extended to the other trilinear contributions and can be simplified

using the relations

[⟨RRL⟩ + ⟨LRR⟩ + ⟨RLR⟩] = − [⟨LLR⟩ + ⟨RLL⟩ + ⟨LRL⟩] . (4.34)

The final result is given by

mass terms = im2
fg3

Y (QR
Y,f )2(QL

Y,f ) [8I00(k1, k2) (ε[k2,λ, µ, ν] − ε[k1,λ, µ, ν])

+24 (I10(k1, k2)ε[k1,λ, µ, ν] − I01(k1, k2)ε[k2,λ, µ, ν])]

−im2
fg3

Y (QR
Y,f )2(QL

Y,f ) [8I00(k1, k2) (ε[k2,λ, µ, ν] − ε[k1,λ, µ, ν])

+24 (I10(k1, k2)ε[k1,λ, µ, ν] − I01(k1, k2)ε[k2,λ, µ, ν])]

+8im2
fgY g2

2Q
R
Y,f (TL

3,f )2 (I01(k1, k2)ε[k2,λ, µ, ν] − I10(k1, k2)ε[k1,λ, µ, ν])

+im2
f

∑

i

gBig
2
Y QL

Bi,f
QR

Y,fQL
Y,f

[

(8I01(q
2, k1, k2) − 4I00(k1, k2))ε[k2,λ, µ, ν]

+(8I10(k1, k2) + 4I00(k1, k2))ε[k1,λ, µ, ν]]

−im2
f

∑

i

gBig
2
Y QR

Bi,f
QL

Y,fQR
Y,f [(8I01(k1, k2) − 4I00(k1, k2))ε[k2,λ, µ, ν]

+(8I10(k1, k2) + 4I00(k1, k2))ε[k1,λ, µ, ν]]

+im2
f

∑

i

gBig
2
Y QR

Bi,f
(QL

Y,f )28 (I01(k1, k2)ε[k2,λ, µ, ν] − I10(k1, k2)ε[k1,λ, µ, ν])

−im2
f

∑

i

gBig
2
Y QL

Bi,f
(QR

Y,f )28 (I01(k1, k2)ε[k2,λ, µ, ν] − I10(k1, k2)ε[k1,λ, µ, ν])

+8im2
f

∑

i

gBig
2
2Q

R
Bi,f

(TL
3,f )2 (I01(k1, k2)ε[k2,λ, µ, ν] − I10(k1, k2)ε[k1,λ, µ, ν])

(4.35)

and is finite. To conclude our derivation in this special case, we can summarize our findings

as follows.

In a triangle diagram of the form, say, AVV, if we impose a vector Ward identity on

the two V lines we redefine the divergent invariant amplitudes A1 and A2 (A2 = −A1)

– 31 –



J
H
E
P
0
5
(
2
0
0
8
)
0
1
5

in terms of the remaining amplitudes A3, . . . , A6, which are convergent. The chirality flip

contributions such as LLR turn out to be finite, but are proportional to A1 and A2, and

disappear once we impose the WI’s on the V lines. This observation clarifies why in the

Zγγ vertex of the SM the mass dependence of the numerators disappears and the traces

can be computed as in the chiral limit. Including the mass dependent contributions we

obtain (see figure 15 for the mf ̸= 0 phase)

⟨Zlγγ⟩|mf ̸=0 = ⟨Zlγγ⟩|mf =0 −
∑

f

1

8
⟨LLL⟩λµν

f

{

g3
Y θ

Y Y Y
f R̄Y Y Y

Zlγγ + g3
2θ

WWW
f R̄WWW

Zlγγ

+g2
2gY θ

Y WW
f RY WW

Zlγγ + g2g
2
Y θ

Y Y W
f RY Y W

Zlγγ +
∑

i

gBig2gY θ
BiY W
f RBiY W

Zlγγ

+
∑

i

gBig
2
Y θ

BiY Y
f RBiY Y

Zlγγ +
∑

i

gBig
2
2θ

BiWW
f RBiWW

Zlγγ

}

Zλ
l Aµ

γAν
γ

+m2
f (chirally flipped terms) (4.36)

where ⟨LLL⟩λµν
f is now defined by eq. (4.31). In Eq.(4.36) we have also defined the following

chiral asymmetries

θWWW
f = (T 3

L,f )3

θY Y W
f =

[

(QL
Y,f )2T 3

L,f

]

θBiY W
f =

[

QBi,fQL
Y,fT 3

L,f

]

(4.37)

It is important to note that eq. (4.36) is still expressed as in Rosenberg (see [22], [6]), with

the usual the finite cubic terms in the momenta k1 and k2 and the two singular pieces and

the mass contributions. At this stage, to get the physical amplitude, we must impose e.m.

current conservation on the external photons

kµ
1 ⟨Zlγγ⟩|λµν

mf ̸=0 = 0

kν
2 ⟨Zlγγ⟩|λµν

mf ̸=0 = 0 . (4.38)

Using these conditions, again we can re-express the coefficient Ā1, Ā2 in terms of A3, . . . , A6

and we drop the explicit mass dependence in the numerators of the expression of the

physical amplitude.

Thus, applying the Ward identities on the triangle ⟨LLL⟩f , it reduces to the combi-

nation ∆AV V (mf )−∆AV V (0) which must be added to the first term in the curly brackets

of eq. (4.36) thereby giving our final result for the physical amplitude

⟨Zlγγ⟩|mf ̸=0 = −
1

2
Zλ

l Aµ
γAν

γ

∑

f

[

g3
Y θ

Y Y Y
f R̄Y Y Y

Zlγγ + g3
2θ

WWW
f R̄WWW

Zlγγ + gY g2
2θ

Y WW
f RY WW

Zlγγ

+g2
Y g2θ

Y Y W
f RY Y W

Zlγγ +
∑

i

gBigY g2θ
BiY W
f RBiY W

Zlγγ

+
∑

i

gBig
2
Y θ

BiY Y
f RBiY Y

Zlγγ + gBig
2
2θ

BiWW
f RBiWW

Zlγγ

]

∆λµν
AV V (mf ̸= 0).

(4.39)

– 32 –



J
H
E
P
0
5
(
2
0
0
8
)
0
1
5

We have defined

R̄Y Y Y
Zlγγ = (OA)Y Zl

(OA)2Y γ , R̄WWW
Zlγγ = (OA)W3Zl

(OA)2W3γ , (4.40)

and the triangle ∆AV V (mf ̸= 0) is given by

∆AV V (mf ̸= 0, k1, k2)
λµν =

1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(mf )

{ε[k1,λ, µ, ν]
[

y(y − 1)k2
2 − xyk1 · k2

]

+ε[k2,λ, µ, ν]
[

x(1 − x)k2
1 + xyk1 · k2

]

+ε[k1, k2,λ, ν] [x(x − 1)kµ
1 − xykµ

2 ]

+ε[k1, k2,λ, µ] [xykν
1 + (1 − y)ykν

2 ]} ,

∆(mf ) = m2
f + x(x − 1)k2

1 + y(y − 1)k2
2 − 2xyk1 · k2 . (4.41)

4.2.3 The SM limit

It is straightforward to obtain the corresponding expression in the SM from the previous

result. As usual we obtain, beside the tensor structures of the Rosenberg expansion, all the

chirally flipped terms which are proportional to a mass term times a tensor kα
1,2ε[α,λ, µ, ν].

As we have seen before in the previous sections all these terms can be re-absorbed once we

impose the conservation of the electromagnetic current.

Then, setting the anomalous pieces to zero by taking gBi → 0, we are left with the

usual Z boson (Zl → Z), and we have

⟨Zγγ⟩|mf ̸=0 = −gZe2
∑

f

[

QL,f
Z (QL

f )2 − QR,f
Z (QR

f )2
] 1

2
∆λµν

AV V (mf ̸= 0)ZλAµ
γAν

γ

= −
∑

f

1

2
∆λµν

AV V (mf ̸= 0)
{

g3
Y θ

Y Y Y
f R̄Y Y Y + g2

2gY θ
Y WW
f RY WW

Zγγ

+g3
2θ

WWW
f R̄WWW

Zγγ + g2
Y g2θ

Y Y W
f RY Y W

Zγγ

}

ZλAµ
γAν

γ ,

(4.42)

where the coefficients R̄Y Y Y
Zγγ , R̄WWW

Zγγ are defined in the previous section. It is not difficult

to recognize that in the first line we have

⟨Zγγ⟩|mf ̸=0 = −gZe2 1

2

∑

f

(Qf )2
[

QL,f
Z − QR,f

Z

]

∆λµν
AV V (mf ̸= 0)ZλAµ

γAν
γ (4.43)

and since
[

QL,f
Z − QR,f

Z

]

= 2gZ
A,f

gZ ≈
g2

cos θW
(4.44)

finally we obtain

⟨Zγγ⟩|mf ̸=0 = −
g2

cos θW
e2
∑

f

(Qf )2gZ
A,f∆λµν

AV V (mf ̸= 0)ZλAµ
γAν

γ , (4.45)

which is exactly the SM vertex [21].
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Z

γ

γ

Y

Y

Y

+
Y

W3

W3

+
B

Y

Y

+
B

W3

W3

Figure 15: Interaction basis contribution to the Zγγ vertex. In the SM only the first two diagrams
survive. The CS terms, in this case, are absorbed so that only the B vertex is anomalous. In the
chiral limit in the SM the first two diagrams vanish.
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Figure 16: Chiral triangles contribution to the Zγγ vertex.

5. The γZZ vertex

Before coming to analyze the most general cases involving two or three anomalous Z ′s, it

is more convenient to start with the γZZ interaction with two identical Z’s in the final

state and use the result in this simpler case for the general analysis.

5.1 The vertex in the chiral limit

We proceed in the same manner as before. In the mf = 0 phase, the terms in the interaction

eigenstates basis we need to consider are

1

3!
Tr
[

Q3
Y

]

⟨Y Y Y ⟩ =
1

3!
Tr
[

Q3
Y

] [

3(OA
Y Z)2OA

Y γ

]

⟨γZZ⟩ + . . .

1

2!
Tr
[

QY T 2
3

]

⟨Y WW ⟩ =
1

2!
Tr
[

QY T 2
3

] [

2OA
WZOA

WγOA
Y Z + (OA

WZ)2OA
Y γ

]

⟨γZZ⟩ + . . .

1

2!
Tr
[

QY Q2
B

]

⟨Y BB⟩ =
1

2!
Tr
[

QY Q2
B

] [

OA
Y γ(OA

BZ)2
]

⟨γZZ⟩ + . . .

1

2!
Tr
[

QBQ2
Y

]

⟨BY Y ⟩ =
1

2!
Tr
[

QBQ2
Y

] [

2OA
BZOA

Y ZOA
Y γ

]

⟨γZZ⟩ + . . .

1

2!
Tr
[

QBT 2
3

]

⟨BWW ⟩ =
1

2!
Tr
[

QBT 2
3

] [

2OA
BZOA

WZOA
Wγ

]

⟨γZZ⟩ + . . . (5.1)

We define for future reference the following expressions for the rotation matrix

RY Y Y
γZZ =

[

3(OA
Y Z)2OA

Y γ

]

RWWW
γZZ =

[

3(OA
W3Z)2OA

W3γ

]

RWY Y
γZZ =

[

2OA
W3ZOA

Y γOA
Y Z + (OA

W3γ)(OA
Y Z)2

]
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RY WW
γZZ =

[

2OA
W3ZOA

W3γOA
Y Z + (OA

W3Z)2OA
Y γ

]

RBY Y
γZZ =

[

2OA
BZOA

Y ZOA
Y γ

]

RBBY
γZZ =

[

OA
Y γ(OA

BZ)2
]

RBBW
γZZ =

[

OA
W3γ(OA

BZ)2
]

RBWW
γZZ =

[

2OA
BZOA

W3ZOA
W3γ

]

RBY W
γZZ =

[

OA
BZOA

W3ZOA
Y γ + OA

BZOA
W3γOA

Y Z

]

. (5.2)

The chiral decomposition proceeds similarly to the case of Zγγ (see figure 16). Also in this

situation the tensor ⟨LLL⟩λµν
f is characterized by the two independent momenta k1,µ and

k2,ν , of the two outgoing Z ′s. Since the LLL triangle is still ill-defined, we must distribute

the anomaly in a certain way. This is driven by the symmetry of the theory, and in this

case the STI’s play a crucial role even in the mf = 0 unbroken chiral phase of the theory.

In order to define the ⟨LLL⟩λµν |mf =0 diagram we choose a symmetric assignment of the

anomaly

k1,µ⟨LLL⟩λµν |mf =0 =
an

3
ε[k1, k2,λ, ν]

k2,ν⟨LLL⟩λµν |mf =0 = −
an

3
ε[k1, k2,λ, µ]

kλ⟨LLL⟩λµν |mf =0 =
an

3
ε[k1, k2, µ, ν] . (5.3)

These conditions together with the Bose symmetry on the two Z ′s

⟨LLL⟩λµν |mf =0(k, k1, k2) = ⟨LLL⟩λνµ|mf =0(k, k2, k1) (5.4)

allow us to remove the singular coefficients proportional to the two linear tensor structures

of the amplitude. The complete tensor structure of the γZZ vertex in this case can be

written in terms of the usual invariant amplitudes A1, . . . A6

A3 = −16 (I10(k1, k2) − I20(k1, k2))

A4 = +16I11(k1, k2)

A5 = −16I11(k1, k2)

A6 = −16 (I01(k1, k2) − I02(k1, k2))

A1 = −k1 · k2A5 − k2
2A6 +

an

3

A2 = −k1 · k2A4 − k2
1A3 −

an

3
. (5.5)

We have the constraints

kλ⟨LLL⟩λµν |mf =0 =
an

3
ε [k1, k2, µ, ν] ⇒ A1 − A2 =

an

3
(5.6)

and eq. (4.13). In this case the CS terms coming from the lagrangian in the interaction
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eigenstates basis are defined as follows

VCS=
∑

f

{

−gBg2
Y

1

8
θY BY
f RY BY

γZZ

an

3
εµνλα(k2,α−k3,α)−gBg2

Y

1

8
θY Y B
f RY Y B

γZZ

an

3
ενλµα(k3,α−k1,α)

+gY g2
B

1

8
θY BB
f RY BB

ZZγ

an

6
ελµνα(k1,α−k2,α)−gBg2

2
1

8
θWBW
f RWBW

ZZγ

an

3
εµνλα(k2,α−k3,α)

−gBg2
2
1

8
θWWB
f RWWB

ZZγ

an

3
ενλµα(k3,α − k1,α)

}

. (5.7)

Then, collecting all the terms, the expression in the mf = 0 phase for the γZZ process

can be written as

⟨γZZ⟩|mf =0 = −
1

2
Aλ

γZµZν
∑

f

{

gBg2
Y θ

Y BY
f RY BY

γZZ

[

∆µνλ
AAA(0) −

an

3
εµνλα(k2,α − k3,α)

]

+gBg2
Y θ

Y Y B
f RY Y B

γZZ

[

∆νλµ
AAA(0) −

an

3
ενλµα(k3,α − k1,α)

]

+gY g2
Bθ

Y BB
f RY BB

ZZγ

[

∆λµν
AAA(0) +

an

6
ελµνα(k1,α − k2,α)

]

+gBg2
2θ

WBW
f RWBW

ZZγ

[

∆µνλ
AAA(0) −

an

3
εµνλα(k2,α − k3,α)

]

+gBg2
2θ

WWB
f RWWB

ZZγ

[

∆νλµ
AAA(0) −

an

3
ενλµα(k3,α − k1,α)

]}

, (5.8)

and after some manipulations, we obtain

⟨γZZ⟩|mf =0 = −
1

2

[

∆λµν
V AV (0) + ∆λµν

V V A(0)
]

Aλ
γZµZν

∑

f

{

gBg2
Y θ

BY Y
f RBY Y

+gY g2
Bθ

Y BB
f R̄Y BB + gBg2

2θ
BWW
f RBWW

}

, (5.9)

where we have used

θY BB
f = QL

Y,f (QL
B,f )2 − QR

Y,f (QR
B,f )2

R̄BBY
γZZ =

1

2
RBBY

γZZ . (5.10)

If we define

T λµν(0) =
[

∆λµν
V AV (0) + ∆λµν

V V A(0)
]

(5.11)

we can write an explicit expression for T λµν , which is given by

T λµν(0) =
1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(0)

{

εαλµνk1,α

[

(1 − x)xk2
1 + y(y − 1)k2

2

]

+εαλµνk2,α

[

(1 − x)xk2
1 + y(y − 1)k2

2

]

+ε[k1, k2,λ, ν] [2(x − 1)xk1,µ − 2xyk2,µ]

+ε[k1, k2,λ, µ] [2(1 − y)yk2,ν + 2xyk1,ν ]} , (5.12)
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and it is straightforward to observe that the electromagnetic current conservation is satisfied

on the photon line

k1,µT λµν =
1

2π2
ε [k1, k2,λ, ν]

k2,νT λµν = −
1

2π2
ε [k1, k2,λ, µ]

(k1,λ + k2,λ)T λµν = 0. (5.13)

5.2 γZZ: The mf ̸= 0 phase

In the mf ̸= 0 phase we must add to the previous chirally conserved contributions all the

chirally flipped interactions of the type ⟨LLR⟩ and similar, which are proportional to m2
f .

As we have already seen in the Zγγ case, all the mass terms have a tensor structure of

the type m2
fε

α,λ,µ,νk1,2,α and we can always define the coefficients Ā1 and Ā2 so that they

include all the mass terms. Again, they are expressed in terms of the finite quantities

A3, . . . , A6 by imposing the physical restriction, i.e. the em. current conservation on the

photon line, and the anomalous Ward identities on the two Z ′s lines. Since the CS inter-

actions act only on the massless part of the triangles, they are absorbed by splitting the

tensor ⟨LLL⟩λµν as

⟨LLL⟩λµν |f = ⟨LLL⟩λµν |mf =0 + ⟨LLL⟩λµν(mf );

⟨LLL⟩λµν(mf ) = ⟨LLL⟩λµν |mf ̸=0 − ⟨LLL⟩λµν |mf =0.

(5.14)

Then, the structure of the amplitude will be

1

2!
⟨γZZ⟩|mf ̸=0 = Ā1ε[k1,λ, µ, ν] + Ā2ε[k2,λ, µ, ν] + A3k

µ
1 ε[k1, k2,λ, ν]

+A4k
µ
2 ε[k1, k2,λ, ν] + A5k

ν
1ε[k1, k2,λ, µ] + A6k

ν
2ε[k1, k2,λ, ν] (5.15)

and using the explicit expressions of the coeficients we obtain

⟨γZZ⟩|mf ̸=0 = −
∑

f

[

g3
Y θ

Y Y Y
f R̄Y Y Y

γZZ + g3
2θ

WWW
f R̄WWW

γZZ

+gY g2
2θ

Y WW
f RY WW

γZZ + g2
Y g2θ

Y Y W
f RY Y W

γZZ

+gBg2
Y θ

BY Y
f RBY Y

γZZ + gY g2
Bθ

Y BB
f R̄Y BB

γZZ

+g2
Bg2θ

WBB
f R̄WBB

γZZ + gBg2
2θ

BWW
f RBWW

γZZ

+g2
Bg2gY θ

BY W
f RBY W

γZZ

] 1

2
T λµν(mf ̸= 0)AγZµZν , (5.16)

where we have defined

T λµν(mf ̸= 0) =
[

∆λµν
V AV (mf ̸= 0) + ∆λµν

V V A(mf ̸= 0)
]

,

θWBB
f = (QL

B,f )2T 3
L,f ,

R̄WBB
γZZ =

1

2
RWBB

γZZ , (5.17)
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T λµν(mf ̸= 0) =
1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(mf )

{

εαλµνk1,α

[

(1 − x)xk2
1 − y(1 − y)k2

2

]

+εαλµνk2,α

[

(1 − x)xk2
1 − y(1 − y)k2

2

]

+ε[k1, k2,λ, ν] [2(x − 1)xk1,µ − 2xyk2,µ]

+ε[k1, k2,λ, µ] [2(1 − y)yk2,ν + 2xyk2,µ]} .(5.18)

We can immediately see that the expected broken Ward identities

k1,µT λµν =
1

π2
ε [k1, k2,λ, ν]

{

1

2
− m2

f

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(mf )

}

k2,νT
λµν = −

1

π2
ε [k1, k2,λ, ν]

{

1

2
− m2

f

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(mf )

}

(k1,λ + k2,λ)T λµν = 0 (5.19)

are indeed satisfied.

6. Trilinear interactions in multiple U(1) models

Building on the computation of the Zγγ and γZZ presented in the sections above, we

formulate here some general prescriptions that can be used in the analysis of anomalous

abelian models when several U(1)’s are present and which help to simplify the process of

building the structure of the anomalous vertices in the basis of the mass eigenstates. The

general case is already encountered when the anomalous gauge structure contains three

anomalous U(1)’s beside the usual gauge groups of the SM. We prefer to work with this

specific choice in order to simplify the formalism, though the discussion and the results are

valid in general.

We denote respectively with W3, AY , B1,W3W3 the weak, the hypercharge gauge boson

and their 3 anomalous partners. At this point we consider the anomalous triangle diagrams

of the model and observe that we can either

1. distribute the anomally equally among all the corresponding generators

(T3, Y, YB1
, YB2

, YB3
) and compensate for the violation of the Ward identity on the

non anomalous vertices with suitable CS interactions

or

2. re-define the trilinear vertices ab initio so that some partial anomalies are removed

from the Y − W3 generators in the diagrams containing mixed anomalies. Also in

this case some CS counterterms may remain.

We recall that the anomaly-free generators are not accompanied by axions. The dif-

ference between the first and the second method is in the treatment of the CS terms: in

the first case they all appear explicitly as separate contributions, while in the second one

they can be absorbed, at least in part, into the definition of the vertices. In one case or

the other the final result is the same. In particular one has to be careful on how to handle
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the distribution of the partial anomalies (in the physical basis) especially when a certain

vertex does not have any Bose symmetry, such as for three different gauge bosons, and

this is not constrained by specific relations. In this section we will go back again to the

examples that we have discussed in detail above and illustrate how to proceed in the most

general case.

Consider the Zγγ case in the chiral limit. For instance, a vertex of the form B2Y Y

will be projected into the Zγγ vertex with a combination of rotation matrices of the form

RB2Y Y
Zγγ , generating a partial contribution which is typically of the form ⟨LLL⟩RB2Y Y

Zγγ . At

this point, in the B2Y Y diagram, which is interpreted as a ⟨LLL⟩ ∼ ∆AAA contribution,

we move the anomaly on the B2-vertex by absorbing one CS term, thereby changing the

⟨LLL⟩ vertex into an AVV vertex.

We do the same for all the trilinear contributions such as B3Y Y,B1B2B3 and so on,

similarly to what we have discussed in the previous sections. For instance B3Y Y , which is

also proportional to an AAA diagram, is turned into an AVV diagram by a suitable CS

term. The Zγγ is identified by adding up all the projections. This is the second approach.

The alternative procedure, which is the basic content of the first prescription mentioned

above, consists in keeping the B2Y Y vertex as an AAA vertex, while the CS counterterm,

which is needed to remove the anomaly from the Y vertex, has to be kept separate. Also

in this case the contribution of B2Y Y to Zγγ is of the form ⟨LLL⟩RB2Y Y
Zγγ , with ⟨LLL⟩ ∼

∆AAA, and the CS terms that accompanies this contribution is also rotated into the same

Zγγ vertex.

Using the second approach in the final construction of the Zγγ vertex we add up all

the projections and obtain as a result a single AV V diagram, as one would have naively

expected using QED Ward identities on the photons lines. Instead, following the first we

are forced to describe the same vertex as a sum of two contributions: a fermionic triangle

(which has partial anomalies on the two photon lines) plus the CS counterterms, the sum

of which is again of the form AVV.

However, when possible, it is convenient to use a single diagram to describe a certain

interaction, especially if the vertex has specific Bose symmetries, as in the case of the Zγγ

vertex.

For instance, we could have easily inferred the result in the Zγγ case with no difficulty

at all, since the partial anomaly on the photon lines is zero and the total anomaly, which

is a constant, has to be necessarily attached to the Z line and not to the photon. A similar

result holds for the ZZZ vertex where the anomaly has to be assigned symmetrically.

Notice that, in prescription 2) when several extra U(1)’s are present, the vertices in the

interaction eigenstate basis such as B1B2B3 or B1B1B2 should be kept in their AAA form,

since the presence of axions (b1, b2, b3) is sufficient to guarantee the gauge invariance of each

anomalous gauge boson line.

A final example concerns the case when 3 different anomalous gauge bosons are present,

for instance ZZ ′Z ′′. In this case the distribution of the partial anomalies can be easily

inferred by combining all the projections of the trilinear vertices B1Y Y,B1WW,B1B2B3,

B1B2B3, B2B3B3 . . . etc. into ZZ ′Z ′′. The absorption of the CS terms here is also straight-

forward, since vertices such as B1Y Y , Y B1Y and Y Y B1 are rewritten as AVV, VAV and
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VVA contributions respectively. On the other hand, terms such as B2B1B1 or B1B2B3 are

kept in their AAA form with an equal share of partial anomalies. Notice that in this case

the final vertex, also in the second approach where the CS terms are partially absorbed,

does not result in a single diagram as in the Zγγ case, but in a combination of several

contributions.

6.1 Moving away from the chiral limit with several anomalous U(1)’s

Chiral symmetry breaking, as we have seen in the examples discussed before, introduces a

higher level of complications in the analysis of these vertices. Also in this case we try to find

a prescription to fix the trilinear anomalous gauge interactions away from the chiral limit.

As we have seen from the treatment of the previous sections, the presence of mass terms in

any triangle graph is confined to denominator of their Feynman parameterization, once the

Ward identities are imposed on each vertex. This implies that all the mixed terms of the

form LLR or RRL containing quadratic mass insertions can be omitted in any diagram

and the final result for any anomalous contributions such as B1B2B3 or B1Y Y involves

only an ⟨LLL⟩ fermionic triangle where the mass from the Dirac traces is removed.

For instance, let’s consider again the derivation of the γZZ vertex in this case. We

project the trilinear gauge interactions of the effective action written in the eigenstate basis

into the γZZ vertex (see figure 17) as before and, typically, we encounter vertices such as

B1B2B2 or B1Y Y (and so on) that need to be rotated. We remove the masses from the

numerator of these vertices and reduce each of them to a standard ⟨LLL⟩ form, having

omitted the mixing terms LLR, RRL, etc. Also in this case a vertex such as B1Y Y is

turned into an AVV by absorbing a corresponding CS interaction, while its broken Ward

identities will be of the form

k1µ∆λµν(β, k1, k2) = 0

k2ν∆λµν(β, k1, k2) = 0

kλ∆λµν(β, k1, k2) = an(β)εµναβkα
1 kβ

2 + 2mf∆µν , (6.1)

with a broken WI on the A line and exact ones on the remaining V lines corresponding to

the two Y generators. Similarly, when we consider the projection of a term such as B1B2B3

into ZZ ′Z ′′ vertex, we impose a symmetric distribution of the anomaly and broken WI’s

on the three external lines

k1µ∆λµν
3 (k1, k2) =

an

3
ελναβkα

1 kβ
2 + 2mf∆λν ,

k2ν∆λµν
3 (k1, k2) =

an

3
ελµαβkα

2 kβ
1 + 2mf∆λµ,

kλ∆λµν
3 (k1, k2) =

an

3
εµναβkα

1 kβ
2 + 2mf∆µν . (6.2)

The total vertex is therefore obtained by adding up all these projections together with 3

CS contributions to redistribute the anomalies. Next we are going to discuss the explicit

way of doing this.
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Y

Y

Y
Y

W3

W3
W3

W3

Y
W3

Y

W3

W3

W3

Bj

Bi

W3W3

Y

BiY Y

Bj

Y
Y

Bj

Bi

Figure 17: Triangle contributions to the ⟨γZlZm⟩ vertex in the chiral phase. Notice that the first
four contributions vanish because of the SM charge assignment.

7. The ⟨γZlZm⟩ vertex

At this stage we can generalize the construction of ⟨γZZ⟩ to a general ⟨γZlZm⟩ vertex. The

contributions coming from the interaction eigenstates basis to the ⟨γZlZm⟩ in the chiral

limit are given by

1

3!
Tr
[

Q3
Y

]

⟨Y Y Y ⟩ =
1

3!
Tr
[

Q3
Y

]

RY Y Y
γZlZm

⟨γZlZm⟩ + . . .

1

2!
Tr
[

QY T 2
3

]

⟨Y WW ⟩ =
1

2!
Tr
[

QY T 2
3

]

RY WW
γZlZm

⟨γZlZm⟩ + . . .

1

2!
Tr
[

QY T 2
3

]

⟨WY W ⟩ =
1

2!
Tr
[

QY T 2
3

]

RWY W
γZlZm

⟨γZlZm⟩ + . . .

1

2!
Tr
[

QY T 2
3

]

⟨WWY ⟩ =
1

2!
Tr
[

QY T 2
3

]

RWWY
γZlZm

⟨γZlZm⟩ + . . .

1

2!
Tr
[

QBjT
2
3

]

⟨WBjW ⟩ =
1

2!
Tr
[

QBjT
2
3

]

R
WBjW
γZlZm

⟨γZlZm⟩ + . . .

1

2!
Tr
[

QBjT
2
3

]

⟨WWBj⟩ =
1

2!
Tr
[

QBjT
2
3

]

R
WWBj

γZlZm
⟨γZlZm⟩ + . . .

1

2!
Tr
[

QBjQ
2
Y

]

⟨Y BjY ⟩ =
1

2!
Tr
[

QBjQ
2
Y

]

R
Y BjY
γZlZm

⟨γZlZm⟩ + . . .

1

2!
Tr
[

QBjQ
2
Y

]

⟨Y Y Bj⟩ =
1

2!
Tr
[

QBjQ
2
Y

]

R
Y Y Bj

γZlZm
⟨γZlZm⟩ + . . .

T r
[

QY QBjQBk

]

⟨Y BjBk⟩ = Tr
[

QY QBjQBk

]

R
Y BjBk

γZlZm
⟨γZlZm⟩ + . . . (7.1)

and they are pictured in figure 17. The rotation matrices are defined in the following

expressions

RY Y Y
γZlZm

=
[

3OA
Y Zl

OA
Y Zm

OA
Y γ

]

RWWW
γZlZm

=
[

3OA
W3Zl

OA
W3Zm

OA
W3γ

]

RY WW
γZlZm

=
[

OA
WZl

OA
WγOA

Y Zm
+ OA

WZm
OA

WγOA
Y Zl

+ OA
WZl

OA
WZm

OA
Y γ

]

RWY Y
γZlZm

=
[

(OA
W3Zl

OA
Y Zm

+ OA
W3Zm

OA
Y Zl

)OA
Y γ + OA

W3γOA
Y Zm

OA
Y Zl

]

R
BjY Y
γZlZm

=
[

OA
BjZl

OA
Y Zm

OA
Y γ + OA

BjZm
OA

Y Zl
OA

Y γ

]

R
BjY W
γZlZm

=
[

(OA
BjZl

OA
Y Zm

+ OA
BjZm

OA
Y Zl

)OA
W3γ + (OA

BjZm
OA

W3Zl
+ OA

BjZl
OA

W3Zm
)OA

Y γ

]
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Y

Bi

Y

Bj

Y

Y

Bj

Bi

Y

Bi

W3

W3

W3

Bj
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Figure 18: Chern-Simons counterterms of the ⟨γZlZm⟩ vertex

R
Y BiBj

γZlZm
=
[

(OA
BiZl

OA
BjZm

+ OA
BiZm

OA
BjZl

)OA
Y γ

]

R
WBiBj

γZlZm
=
[

(OA
BiZl

OA
BjZm

+ OA
BiZm

OA
BjZl

)OA
W3γ

]

R
BjWW
γZlZm

=
[

OA
BjZl

OA
WZm

OA
Wγ + OA

BjZm
OA

WZl
OA

Wγ

]

(7.2)

while all the possible CS counterterms are listed in figure 18 and their explicit expression

in the rotated basis is given by

VCS,lm =
∑

f

{

−
∑

i

1

8
θY BiY
f

an

3
ελµνα(k2,α − k3,α)RY BiY

γZlZm
Aλ

γZµ
l Zν

m

−
∑

j

1

8
θ

Y Y Bj

f

an

3
ελµνα(k3,α − k1,α)R

Y Y Bj

γZlZm
Aλ

γZµ
l Zν

m

+
∑

i,j

1

8
θ

Y BiBj

f

an

6
ελµνα(k1,α − k2,α)R

Y BiBj

γZlZm
Aλ

γZµ
l Zν

m

−
∑

i

1

8
θWBiW
f

an

3
ελµνα(k2,α − k3,α)RWBiW

γZlZm
Aλ

γZµ
l Zν

m

−
∑

j

1

8
θ

WWBj

f

an

3
ελµνα(k3,α − k1,α)R

WWBj

γZlZm
Aλ

γZµ
l Zν

m

⎫

⎬

⎭

, (7.3)

where we have defined k3,α = −kα, with kα = (k1 + k2)α the incoming momenta of the

triangle. Using eq. (4.20) it is easy to write the expression of the amplitude for the ⟨γZlZm⟩
interaction in the mf = 0 phase, and separate the chiral components exactly as we have

done for the ⟨γZZ⟩ vertex. Again, the tensorial structure that we can factorize out is

⟨LLL⟩λµν(0)

⟨γZlZm⟩|mf =0 =
∑

f

1

8
⟨LLL⟩λµν(0)Aλ

γZµ
l Zν

m

{

∑

i

g2
Y gBiθ

Y BiY
f RY BiY

γZlZm

+
∑

j

g2
Y gBjθ

Y Y Bj

f R
Y Y Bj

γZlZm
+
∑

i,j

gY gBigBjθ
Y BiBj

f R
Y BiBj

γZlZm

+
∑

i

g2
2gBiθ

WBiW
f RWBiW

γZlZm
+
∑

j

g2
2gBjθ

WWBj

f R
WWBj

γZlZm

⎫

⎬

⎭

. (7.4)
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Also in this case we use eq. (4.13) and proceed from a symmetric distribution of the

anomalies and absorb the equations the CS interactions so to obtain

−⟨γZlZm⟩|mf =0 =
∑

i

g2
Y gBi

∑

f

1

2
θY BiY
f ∆λµν

V AV (0)RY BiY
γZlZm

Aλ
γZµ

l Zν
m

+
∑

j

g2
Y gBj

∑

f

1

2
θ

Y Y Bj

f ∆λµν
V V A(0)R

Y Y Bj

γZlZm
Aλ

γZµ
l Zν

m

+
∑

i,j

gY gBigBj

∑

f

θ
Y BiBj

f

1

2

[

∆λµν
V AV (0) + ∆λµν

V V A(0)
]

R
Y BiBj

γZlZm
Aλ

γZµ
l Zν

m

+
∑

i

g2
2gBi

∑

f

θWBiW
f

1

2
∆λµν

V AV (0)RWBiW
γZlZm

Aλ
γZµ

l Zν
m

+
∑

j

g2
2gBj

∑

f

θ
WWBj

f

1

2
∆λµν

V V A(0)R
WWBj

γZlZm
Aλ

γZµ
l Zν

m . (7.5)

At this point one can readily observe that a simple rearrangement of the summations over

the i, j index leads us to factor out the structure VAV plus VVA since we have the same

rotation matrices. Finally, in the mf = 0 phase we have

⟨γZlZm⟩|mf =0=−
∑

f

1

2

[

∆λµν
V AV (0) + ∆λµν

V V A(0)
]

Aλ
γZµ

l Zν
m ×

∑

i

⎧

⎨

⎩

g2
Y gBiθ

BiY Y
f RY Y Bi

γZlZm
+
∑

j

gY gBigBjθ
Y BiBj

f R
Y BiBj

γZlZm
+ g2

2gBiθ
WWBi
f RWWBi

γZlZm

⎫

⎬

⎭

.

(7.6)

If the CS terms are instead not absorbed we have

⟨γZlZm⟩|mf =0= VCS,lm −
∑

f

1

2
∆λµν

AAA(0)Aλ
γZµ

l Zν
m ×

∑

i

⎧

⎨

⎩

g2
Y gBiθ

BiY Y
f RY Y Bi

γZlZm
+
∑

j

gY gBigBjθ
Y BiBj

f R
Y BiBj

γZlZm
+ g2

2gBiθ
WWBi
f RWWBi

γZlZm

⎫

⎬

⎭

,

(7.7)

which is equivalent to that obtained in (7.6).

7.1 Amplitude in the mf ̸= 0 phase

Once we have fixed the structure of the triangle in the mf = 0 phase, its extension to the

massive case can be obtained using the relation

⟨LLL⟩(mf ̸= 0)=−[∆AV V (mf ̸= 0) + ∆V AV (mf ̸= 0)+∆V V A(mf ̸= 0)+∆AAA(mf ̸= 0)]

(7.8)
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and the expression of the vertex will be

⟨γZlZm⟩|mf ̸=0 =
1

8

∑

f

⟨LLL⟩λµν(mf ̸= 0)Aλ
γZµ

l Zν
m

{

g3
Y θ

Y Y Y
f RY Y Y

γZlZm

+g3
2θ

WWW
f RWWW

γZlZm
+ gY g2

2θ
Y WW
f RY WW

γZlZm

+g2
Y g2θ

WY Y
f RWY Y

γZlZm
+
∑

i

g2
Y gBiθ

Y Y Bi
f RY Y Bi

γZlZm

+
∑

i

gY g2gBiθ
BiY W
f RBiY W

γZlZm
+
∑

i,j

gY gBigBjθ
Y BiBj

f R
Y BiBj

γZlZm

+
∑

i,j

g2gBigBjθ
WBiBj

f R
WBiBj

γZlZm
+
∑

i

g2
2gBiθ

WWBi
f RWWBi

γZlZm

⎫

⎬

⎭

+m2
f [⟨LRL⟩ + ⟨RRL⟩ + . . .] . (7.9)

By imposing the following broken Ward identities on the tensor structure

kµ
1

(

⟨γZlZm⟩λµν + V λµν
CS

)

=
an

2
ελναβk1,αk2,β + 2mf∆λν

kν
2

(

⟨γZlZm⟩λµν + V λµν
CS

)

= −
an

2
ελµαβk1,αk2,β − 2mf∆λµ

kλ
(

⟨γZlZm⟩λµν + V λµν
CS

)

= 0 (7.10)

we arrange all the mass terms into the coefficients Ā1 and Ā2 of the Rosenberg parametriza-

tion of ⟨LLL⟩λµν and we absorbe all the singular pieces. Since all the CS interactions act

only on the massless part of the LLL structure, we are left with an expression which is

similar to eq. (7.5) but with the addition of the triangle contributions coming from the

Standard Model where the mass is contained only in the denominators. Organizing all the

partial contributions we arrive at the final expression in which the structure VAV plus

VVA is factorized out

⟨γZlZm⟩|mf ̸=0 = −
∑

f

1

2

[

∆λµν
V AV (mf ̸= 0) + ∆λµν

V V A(mf ̸= 0)
]

Aλ
γZµ

l Zν
m ×

{

g3
Y θ

Y Y Y
f R̄Y Y Y

γZlZm
+ g3

2θ
WWW
f R̄WWW

γZlZm

+gY g2
2θ

Y WW
f RY WW

γZlZm
+ g2

Y g2θ
WY Y
f RWY Y

γZlZm

+
∑

i

g2
Y gBiθ

BiY Y
f RBiY Y

γZlZm
+
∑

i

gY g2gBiθ
BiY W
f RBiY W

γZlZm

+
∑

i,j

gY gBigBjθ
Y BiBj

f R
Y BiBj

γZlZm
+
∑

i,j

g2gBigBjθ
WBiBj

f R
WBiBj

γZlZm

+
∑

i

g2
2gBiθ

WWBi
f RBiWW

γZlZm

}

. (7.11)

8. The ⟨ZlZmZr⟩ vertex

Moving to the more general trilinear vertex is rather straightforward. We can easily identify

all the contributions coming from the interaction eigenstates basis to the ⟨ZlZmZr⟩. In the
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Figure 19: Triangles contributions to the ⟨ZlZmZr⟩ vertex

chiral limit these are

1

3!
Tr
[

Q3
Y

]

⟨Y Y Y ⟩ =
1

3!
Tr
[

Q3
Y

]

RY Y Y
ZlZmZr

⟨ZlZmZr⟩ + . . .

1

2!
Tr
[

QY T 2
3

]

⟨Y WW ⟩ =
1

2!
Tr
[

QY T 2
3

]

RY WW
ZlZmZr

⟨ZlZmZr⟩ + . . .

1

2!
Tr
[

QY T 2
3

]

⟨WY W ⟩ =
1

2!
Tr
[

QY T 2
3

]

RWY W
ZlZmZr

⟨ZlZmZr⟩ + . . .

1

2!
Tr
[

QY T 2
3

]

⟨WWY ⟩ =
1

2!
Tr
[

QY T 2
3

]

RWWY
ZlZmZr

⟨ZlZmZr⟩ + . . .

1

2!
Tr
[

QBjT
2
3

]

⟨BjWW ⟩ =
1

2!
Tr
[

QBjT
2
3

]

R
BjWW
ZlZmZr

⟨ZlZmZr⟩ + . . .

1

2!
Tr
[

QBjT
2
3

]

⟨WBjW ⟩ =
1

2!
Tr
[

QBjT
2
3

]

R
WBjW
ZlZmZr

⟨ZlZmZr⟩ + . . .

1

2!
Tr
[

QBjT
2
3

]

⟨WWBj⟩ =
1

2!
Tr
[

QBjT
2
3

]

R
WWBj

ZlZmZr
⟨ZlZmZr⟩ + . . .

1

2!
Tr
[

QBjQ
2
Y

]

⟨BjY Y ⟩ =
1

2!
Tr
[

QBjQ
2
Y

]

R
BjY Y
ZlZmZr

⟨ZlZmZr⟩ + . . .

1

2!
Tr
[

QBjQ
2
Y

]

⟨Y BjY ⟩ =
1

2!
Tr
[

QBjQ
2
Y

]

R
Y BjY
ZlZmZr

⟨ZlZmZr⟩ + . . .

1

2!
Tr
[

QBjQ
2
Y

]

⟨Y Y Bj⟩ =
1

2!
Tr
[

QBjQ
2
Y

]

R
Y Y Bj

ZlZmZr
⟨ZlZmZr⟩ + . . .

T r
[

QY QBjQBk

]

⟨Y BjBk⟩ = Tr
[

QY QBjQBk

]

R
Y BjBk

ZlZmZr
⟨ZlZmZr⟩ + . . .

T r
[

QY QBjQBk

]

⟨BjY Bk⟩ = Tr
[

QY QBjQBk

]

R
BjY Bk

ZlZmZr
⟨ZlZmZr⟩ + . . .

T r
[

QY QBjQBk

]

⟨BjBkY ⟩ = Tr
[

QY QBjQBk

]

R
BjBkY
ZlZmZr

⟨ZlZmZr⟩ + . . .

T r
[

QBiQBjQBk

]

⟨BiBjBk⟩ = Tr
[

QBiQBjQBk

]

R
BiBjBk

ZlZmZr
⟨ZlZmZr⟩ + . . . (8.1)

and are listed in figure 19. The rotation matrices, in this case, are defined as
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RY Y Y
ZlZmZr

=
[

3OA
Y Zl

OA
Y Zm

OA
Y Zr

]

RWWW
ZlZmZr

=
[

3OA
W3Zl

OA
W3Zm

OA
W3Zr

]

RY WW
ZlZmZr

=
[

OA
Y Zl

OA
WZm

OA
WZr

+ OA
Y Zm

OA
WZl

OA
WZr

+ OA
Y Zr

OA
WZl

OA
WZm

]

RWY Y
ZlZmZr

=
[

OA
W3Zl

OA
Y Zm

OA
Y Zr

+ OA
W3Zm

OA
Y Zl

OA
Y Zr

+ OA
W3Zr

OA
Y Zl

OA
Y Zm

]

R
BjY Y
ZlZmZr

=
[

OA
BjZl

OA
Y Zm

OA
Y Zr

+ OA
BjZm

OA
Y Zl

OA
Y Zr

+ OA
BjZr

OA
Y Zm

OA
Y Zl

]

R
BjY W
ZlZmZr

=
[

OA
BjZl

(OA
Y Zm

OA
W3Zr

+ OA
Y Zr

OA
W3Zm

) + OA
BjZm

(OA
Y Zl

OA
W3Zr

+ OA
W3Zl

OA
Y Zr

)

+OA
BjZr

(OA
Y Zm

OA
W3Zl

+ OA
Y Zl

OA
W3Zm

)
]

R
BjBkY
ZlZmZr

=
[

(OA
BjZm

OA
BkZr

+ OA
BjZr

OA
BkZm

)OA
Y Zl

+ (OA
BjZr

OA
BkZl

+ OA
BjZl

OA
BkZr

)OA
Y Zm

+(OA
BjZl

OA
BkZm

+ OA
BjZm

OA
BkZl

)OA
Y Zr

]

R
BjBkW
ZlZmZr

=
[

(OA
BjZm

OA
BkZr

+ OA
BjZr

OA
BkZm

)OA
W3Zl

+ (OA
BjZr

OA
BkZl

+ OA
BjZl

OA
BkZr

)OA
W3Zm

+(OA
BjZl

OA
BkZm

+ OA
BjZm

OA
BkZl

)OA
W3Zr

]

R
BjWW
ZlZmZr

=
[

OA
BjZl

OA
W3Zm

OA
W3Zr

+ OA
BjZm

OA
W3Zl

OA
W3Zr

+ OA
BjZr

OA
W3Zm

OA
W3Zl

]

R
BiBjBk

ZlZmZr
=
[

(OA
BjZm

OA
BkZr

+ OA
BjZr

OA
BkZm

)OA
BiZl

+ (OA
BjZr

OA
BkZl

+ OA
BjZl

OA
BkZr

)OA
BiZm

+(OA
BjZl

OA
BkZm

+ OA
BjZm

OA
BkZl

)OA
BiZr

]

. (8.2)

Regarding the CS interactions (see figure 20), we observe that we have a CS term cor-

responding to the anomalous vertex of the type BiBjBk which is non-zero, and we can

formally write this trilinear interaction as

V ijk
CS, lmr = gBigBj gBk

anθ
ijk
lmrR

ijk
lmrZ

λ
l Zµ

mZν
r [κi (ε[k1,λ, µ, ν] − ε[k2,λ, µ, ν])

+κj (ε[k2,λ, µ, ν] − ε[k3,λ, µ, ν]) + κk (ε[k3,λ, µ, ν] − ε[k1,λ, µ, ν])] (8.3)

where for brevity we have defined Rijk
lmr = R

BiBjBk

ZmZlZr
, and so on.

The coefficients θijk
lmr are the charge asymmetries, and the coefficients κi,j,k, are real

numbers that tell us how the anomaly will be distributed on the AAA triangles. Both

are driven by the generalized Ward identities of the theory. In this generalized case the

CS interactions are not all re-absorbed in the definition of the fermionic triangles. In fact

in this case there is no symmetry in the diagram that forces a symmetric assignment of

the anomaly, and the CS terms in the BiBjBk interaction can re-distribute the partial

anomalies. In this case the expressions of the BiBjBk vertex in the momentum space is

given by

Vλµν
BiBjBk

= 4DBiBjBk
gBigBjgBk

∆λµν
AAA

(mf = 0, k1, k2) + DBiBjBk
gBigBjgBk

i

π2
×

[

2κi

9
ελµνα(k1,α − k2,α)+

2κj

9
ελµνα(k2,α − k3,α)+

2κk

9
ελµνα(k3,α − k1,α)

]

.(8.4)

We recall that in the treatment of Y BjBk and other similar triangles we still have two

contributions for each triangle, due to the two orientations of the fermion number in the
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Figure 20: Chern-Simons contributions to the ⟨ZlZmZr⟩ vertex. As before, in the mf = 0 phase
all the SM contributions vanish because of the charge assignment.

loop and our previous expression, obtained for the case of the Y BB vertex, still holds.

Also in this case leads us to absorb the CS interaction in the anomalous vertex. On the

other hand, for the BiBjBk vertex we have

3∆λµν
AAA(0, k1, k2) −

ai
n

3
ελµνα(k1,α − k2,α) −

aj
n

3
ελµνα(k2,α − k3,α) −

ak
n

3
ελµνα(k3,α − k1,α)

= 3∆λµν
AiAjAk

(0, k1, k2) , (8.5)

where we have used the notation ∆(mf = 0, k1, k2) = ∆(0, k1, k2) and ai
n = κian. Using

these equations we can write the ⟨ZlZmZr⟩ triangle in the following way

⟨ZlZmZr⟩|mf =0 = −
1

3

[

∆λµν
V AV (0) + ∆λµν

V V A(0) + ∆λµν
AV V (0)

]

Zλ
l Zµ

mZν
r ×

∑

f

∑

i

{

g2
Y gBiθ

Y Y Bi
f RY Y Bi

ZlZmZr
+
∑

j

gY gBigBjθ
BiBjY
f R

Y BjBk

ZlZmZr

+gBig
2
2θ

BiWW
f RBiWW

ZlZmZr

}

+
∑

f

∑

i,j,k

gBigBj gBk
θ

BiBjBk

f

1

2
∆λµν

AiAjAk
(0)R

BiBjBk

ZlZmZr
Zλ

l Zµ
mZν

r . (8.6)

From this last result we can observe that the anomaly distribution on the last piece is, in

general, not of the type ∆λµν
AAA(0), i.e. symmetric. If we want to factorize out a ∆λµν

AAA(0)

triangle, we should think of this amplitude as a factorized ∆λµν
AAA(0) contribution plus an

external suitable CS interaction which is not re-absorbed and such that it changes the

partial anomalies from the symmetric distribution ∆λµν
AAA(0) to the non-symmetric one

∆λµν
AiAjAk

(0). These two points of view are completely equivalent and give the same result.
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Finally, the analytic expression for each tensor contribution in the mf = 0 phase is

given below. The AVV vertex has been shown in eq. 4.26 while for VAV we have

∆λµν
V AV (0) =

1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(0)
{ε[k1,λ, µ, ν](k2 · k2y(y − 1) − xyk1 · k2)

+ε[k2,λ, µ, ν](k2 · k2y(y − 1) − xyk1 · k2)

+ε[k1, k2,λ, ν](kµ
1 x(x − 1) − xykµ

2 )

+ε[k1, k2,λ, µ](kν
2y(1 − y) + xykν

1 )} , (8.7)

where the denominator is defined as ∆(0) = k2
1(x − 1)x + y(y − 1)k2

2 + 2xyk1 · k2.

Then, for the VVA contribution we obtain

∆λµν
V V A(0) =

1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(0)
{ε[k1,λ, µ, ν](k1 · k1x(1 − x) + xyk1 · k2)

+ε[k2,λ, µ, ν](k1 · k1x(1 − x) + xyk1 · k2)

+ε[k1, k2,λ, ν](kµ
1 x(x − 1) − xykµ

2 )

+ε[k1, k2,λ, µ](kν
2y(1 − y) + xykν

1 )} , (8.8)

and finally the contribution for AAA is ∆AAA(0) = 1/3(∆AV V (0)+∆V AV (0)+∆V V A(0))

∆λµν
AAA(0) =

1

3π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(0)

{

ε[k1,λ, µ, ν]
(

2y(y−1)k2
2−xyk1 · k2+x(1−x)k2

1

)

+ε[k2,λ, µ, ν]
(

2(1 − x)xk2
1 + xyk1 · k2 + y(y − 1)k2

2

)

+ε[k1, k2,λ, ν](kµ
1 x(x − 1) − xykµ

2 )

+ε[k1, k2,λ, µ](kν
2y(1 − y) + xykν

1 )} . (8.9)

9. The mf ̸= 0 phase of the ⟨ZlZmZr⟩ triangle

To obtain the contribution in the mf ̸= 0 phase we must include again all the contributions

⟨Y Y Y ⟩ and ⟨Y WW ⟩ coming from the SM. We start by observing that in this phase the

following relation holds

⟨LLL⟩λµν(mf ̸= 0)=−[∆AAA(mf ̸= 0)+∆V AV (mf ̸=0)+∆V V A(mf ̸= 0)+∆AV V (mf ̸=0)].

(9.1)

Then, since the final tensor structure of the triangle is driven by the STI’s, we start by

assuming the following symmetric distribution of the anomalies on the ∆AAA triangle

kµ
1 ∆λµν

AAA(mf ̸= 0, k1, k2) =
an

3
ελναβk1αk2β + 2mf

1

3
∆λν

kν
2∆λµν

AAA(mf ̸= 0, k1, k2) = −
an

3
ελµαβk1αk2β − 2mf

1

3
∆λµ

kλ∆λµν
AAA(mf ̸= 0, k1, k2) =

an

3
εµναβk1αk2β + 2mf

1

3
∆µν , (9.2)
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= 0

µ

ν

Z1

Z3

Z2

(a)

λ Z1

Z2

Z3

(b)

d
dzλ

λ
µ

ν

µ

ν

GZ1

Z3

(d)

Z2

MZ1
MZ1

GZ1

(c)

ν

µ
Z2

Z3

Figure 21: STI for the Z1 vertex in a trilinear anomalous vertex with several U(1)’s. The CS
counterterm is not absorbed and redistributes the anomaly according to the specific model.

where

∆λν = −
mf

π2
ελναβk1αk2β

∫ 1

0

∫ 1−x

0
dxdy

1

∆(mf )
. (9.3)

These relations define the AAA structure in the massive case. The explicit form of

this triangle is given by

∆λµν
AAA(mf ̸= 0) =

1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(mf )
{

ε[k1,λ, µ, ν]

[

−
∆(mf ) − m2

f

3
+ k2 · k2y(y − 1) − xyk1 · k2

]

+ε[k2,λ, µ, ν]

[

∆(mf ) − m2
f

3
− k1 · k1x(x − 1) + xyk1 · k2

]

+ε[k1, k2,λ, ν](kµ
1 x(x − 1) − xykµ

2 )

+ε[k1, k2,λ, µ](kν
2y(1 − y) + xykν

1 )} , (9.4)

where ∆(mf ) = m2
f + (y − 1)yk2

2 + (x − 1)xk2
1 − 2xyk1 · k2.

Then, the final expression in the mf ̸= 0 phase is

⟨ZlZmZr⟩|mf ̸=0 = −Zλ
l Zµ

mZν
r ×

∑

f

∆λµν
AAA(mf ̸= 0)

∑

i

{

g3
Y θ

Y Y Y
f RY Y Y

ZlZmZr

+g3
2θ

WWW
f RWWW

ZlZmZr
+gY g2

2θ
Y WW
f RY WW

ZlZmZr
+ g2

Y g2θ
Y Y W
f RY Y W

ZlZmZr

+g2
Y gBiθ

Y Y Bi
f RY Y Bi

ZlZmZr
+ gY g2gBiθ

BiY W
f RBiY W

ZlZmZr

+
∑

j

gY gBigBjθ
BiBjY
f R

Y BjBk

ZlZmZr
+
∑

j

g2gBigBjθ
BiBjW
f R

BjBkW
ZlZmZr

+gBig
2
2θ

BiWW
f RBiWW

ZlZmZr
+
∑

j,k

gBigBj gBk
θ

BiBjBk

f R
BiBjBk

ZlZmZr

⎫

⎬

⎭

+VCS .

(9.5)

The diagrammatic structure of the STI for this general vertex is shown in figure 21,

where an irreducible CS vertex (the second contribution in the bracket) is now present.
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10. Discussions

The possibility of detecting anomalous gauge interactions at the LHC remains an interesting

theoretical idea that requires further analysis. The topic is clearly very interesting and may

be a way to shed light on physics beyond the SM in a rather simple framework, though, at a

hadron collider these studies are naturally classified as difficult ones. There are some points,

however, that need clarification when anomalous contributions are taken into account. The

first concerns the real mechanism of cancellation of the anomalies, if it is not realized by a

charge assignment, and in particular whether it is of GS or of WZ type. In the two cases the

high energy behaviour of a certain class of processes is rather different, and the WZ theory,

which induces an axion-like particle in the spectrum, is in practice an effective theory with

a unitarity bound, which has now been quantified [20]. The second point concerns the size

of these anomalous interactions compared against the QCD background, which needs to

be determined to next-to-next-to-leading-order (NNLO) in the strong coupling, at least for

those processes involving anomalous gluon interactions with the extra Z ′. These points are

under investigations and we hope to return with some quantitative predictions in the near

future [20].

11. Conclusions

In this work we have analyzed those trilinear gauge interactions that appear in the context

of anomalous abelian extensions of the SM with several extra U(1)’s. We have discussed

the defining conditions on the effective action, starting from the Stückelberg phase of this

model, down to the electroweak phase, where Higgs-axion mixing takes place. In partic-

ular, we have shown that it is possible to simplify the study of the model in a suitable

gauge, where the Higgs-axion mixing is removed from the effective action. The theory is

conveniently defined, after electroweak symmetry breaking, by a set of generalized Ward

identities and the counterterms can be fixed in any of the two phases. We have also derived

the expressions of these vertices using the equivalence of the effective action in the interac-

tion and in the mass eigenstate basis, and used this result to formulate general rules for the

computation of the vertices which allow to simplify this construction. Using the various

anomalous models that have been constructed in the previous literature in the last decade

or so, it is now possible to explicitly proceed with a more direct phenomenological analysis

of these theories, which remain an interesting avenue for future experimental searches of

anomalous gauge interactions at the LHC.
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A. Gauge variations

In this and in the following appendices we fill in the steps that take to the construction of

the Faddeev-Popov lagrangean of the model.

To define the ghost lagrangean we need to compute the gauge variations. Therefore

let’s consider the variation

δW 3
µ = ∂µα3 − g2ε

3bcW b
µαc, δYµ = ∂µθY , δBµ = ∂µθB, (A.1)

where the parameters have been rotated as the corresponding fields using the same matrix

OA

θγ = OA
11α3 + OA

12θY , (A.2)

θZ = OA
21α3 + OA

22θY + OA
23θB, (A.3)

θZ′ = OA
31α3 + OA

32θY + OA
33θB. (A.4)

In the neutral sector we obtain the variations

δAγ µ = OA
11 δW

3
µ + OA

12 δYµ

= ∂µθγ + iOA
11 g2

(

α−W+
µ − α+W−

µ

)

, (A.5)

δZµ = OA
21 δW

3
µ + OA

22 δYµ + OA
23 δBµ

= ∂µθZ + iOA
21 g2

(

α−W+
µ − α+W−

µ

)

, (A.6)

δZ ′
µ = OA

31 δW
3
µ + OA

32 δYµ + OA
33 δBµ

= ∂µθZ′ + iOA
31 g2

(

α−W+
µ − α+W−

µ

)

, (A.7)

and for the charged fields we obtain

δW±
µ = ∂µα

± ∓ ig2W
±
µ

(

OA
11θγ + OA

21θZ + OA
31θZ′

)

±ig2
(

OA
11Aγµ + OA

21Zµ + OA
31Z

′
µ

)

α± (A.8)

After a lengthy computation we obtain

δH+
u = −i

g2√
2
vuα

+ − i
[αA

2

(

g2O
A
11 + gY OA

12 + gBqB
u OA

13

)

+
αZ

2

(

g2O
A
21 + gY OA

22 + gBqB
u OA

23

)

+
αZ′

2

(

g2O
A
31 + gY OA

32 + gBqB
u OA

33

)

]

H+
u − i

g2

2

(

H0
uR + iH0

uI

)

α+. (A.9)
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and using the expressions for H+
u , H0

uR, H0
uI derived in [7] we obtain

δH+
u = −i

g2√
2
vuα

+ − i
[αA

2

(

g2O
A
11 + gY OA

12 + gBqB
u OA

13

)

+
αZ

2

(

g2O
A
21 + gY OA

22 + gBqB
u OA

23

)

+
αZ′

2

(

g2O
A
31 + gY OA

32 + gBqB
u OA

33

)

]

(sinβG+ − cos βH+)

−i
g2

2

[

(sinα h0 − cosαH0)

+i

(

Oχ
11χ+

Oχ
12c

′
2 − Oχ

13c
′
1

c1c′2 − c′1c2
GZ +

−Oχ
12c2 + Oχ

13c1

c1c′2 − c′1c2
GZ′

)]

α+. (A.10)

Similarly, for the field H+
d we get

δH+
d = −i

g2√
2
vdα

+ − i
[αA

2

(

g2O
A
11 + gY OA

12 + gBqB
d OA

13

)

+
αZ

2

(

g2O
A
21 + gY OA

22 + gBqB
d OA

23

)

+
αZ′

2

(

g2O
A
31 + gY OA

32 + gBqB
d OA

33

)

]

(cos βG+ + sin βH+)

−i
g2

2

[

(cosαh0 + sinαH0)

+ i

(

Oχ
21χ+

Oχ
22c

′
2 − Oχ

23c
′
1

c1c′2 − c′1c2
GZ +

−Oχ
22c2 + Oχ

23c1

c1c′2 − c′1c2
GZ′

)]

α+. (A.11)

Using the relations obtained for the charged Higgs in [7] we get for the charged goldstones

δG+ = sin βδH+
u + cos βδH+

d

δG− = sin βδH−
u + cos βδH−

d . (A.12)

In the Higgs sector we have

δH0
uI = −

g2

2

(

α−(sinβG+ − cos βH+) + α+(sinβG− − cos βH−)
)

+
vu√
2

[(

g2O
A
21 − gY OA

22 − gBqB
u OA

23

)

αZ

+
(

g2O
A
31 − gY OA

32 − gBqB
u OA

33

)

αZ′

]

+
[(

g2O
A
21 − gY OA

22 − gBqB
u OA

23

)

αZ

+
(

g2O
A
31 − gY OA

32 − gBqB
u OA

33

)

αZ′

] (sinαh0 − cosαH0)

2
, (A.13)

and

δH0
dI = −

g2

2

(

α−(cos βG− + sinβH+) + α+(cos βG− + sinβH−)
)

+
vd√
2

[(

g2O
A
21 − gY OA

22 − gBqB
d OA

23

)

αZ

+
(

g2O
A
31 − gY OA

32 − gBqB
d OA

33

)

αZ′

]

+
[(

g2O
A
21 − gY OA

22 − gBqB
d OA

23

)

αZ

+
(

g2O
A
31 − gY OA

32 − gBqB
d OA

33

)

αZ′

] (cosαh0 + sinαH0)

2
, (A.14)
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while for the neutral goldstones we have

δG0
1 = Oχ

12δH
0
uI + Oχ

22δH
0
dI + Oχ

32δb, (A.15)

δG0
2 = Oχ

13δH
0
uI + Oχ

23δH
0
dI + Oχ

33δb. (A.16)

Finally, we determine the variations of the two goldstones

δGZ = c1δG
0
1 + c2δG

0
2, (A.17)

δGZ′

= c′1δG
0
1 + c′2δG

0
2, (A.18)

and the gauge variation of the Stückelberg b in the base of the mass eigenstates

δb = −M1θB

= −M1
(

OA
23θZ + OA

33θZ′

)

. (A.19)

B. The FP lagrangean

This is explicitly given by

LFP = −c̄Z δFZ

δθZ
cZ − c̄Z δFZ

δθZ′

cZ′

− c̄Z δFZ

δθγ
cγ − c̄Z δFZ

δθ+
c+ − c̄Z δFZ

δθ−
c−

−c̄Z′ δFZ′

δθZ
cZ − c̄Z′ δFZ′

δθZ′

cZ′

− c̄Z′ δFZ′

δθγ
cγ − c̄Z′ δFZ′

δθ+
c+ − c̄Z′ δFZ′

δθ−
c−

−c̄γ δFAγ

δθZ
cZ − c̄γ δFAγ

δθZ′

cZ′

− c̄γ δFAγ

δθγ
cγ − c̄γ δFAγ

δθ+
c+ − c̄γ δFAγ

δθ−
c−

−c̄+ δFW+

δθZ
cZ − c̄+ δFW+

δθZ′

cZ′

− c̄+ δFW+

δθγ
cγ − c̄+ δFW+

δθ+
c+ − c̄+ δFW+

δθ−
c−

−c̄− δFW−

δθZ
cZ − c̄− δFW−

δθZ′

cZ′

− c̄− δFW−

δθγ
cγ − c̄− δFW−

δθ+
c+ − c̄− δFW−

δθ−
c−, (B.1)

(B.2)

where we have computed

δFZ

δθZ
= ∂µ

δZµ

δθZ
− ξZMZ

δGZ

δθZ
;

δZµ

δθZ
= ∂µ; (B.3)

δGZ

δθZ
= c1

δG0
1

δθZ
+ c2

δG0
2

δθZ
= c1

(

Oχ
12
δH0

uI

δθZ
+ Oχ

22

δH0
dI

δθZ
+ Oχ

32
δb

δθZ

)

+c2

(

Oχ
13
δH0

uI

δθZ
+ Oχ

23

δH0
dI

δθZ
+ Oχ

33
δb

δθZ

)

, (B.4)

δH0
uI

δθZ
=

[

vu√
2

+
(sinαh0 − cosαH0)

2

]

fu, (B.5)
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δH0
dI

δθZ
=

[

vd√
2

+
(cosαh0 + sinαH0)

2

]

fd, (B.6)

fu,d = g2O
A
21 − gY OA

22 − gBqB
u,dO

A
23,

δb

δθZ
= −M1O

A
23. (B.7)

δFZ

δθZ′

= ∂µ
δZµ

δθZ′

− ξZMZ
δGZ

δθZ′

;
δZµ

δθZ′

= 0; (B.8)

δGZ

δθZ′

= c1
δG0

1

δθZ′

+ c2
δG0

2

δθZ′

= c1

(

Oχ
12
δH0

uI

δθZ′

+ Oχ
22

δH0
dI

δθZ′

+ Oχ
32

δb

δθZ′

)

+c2

(

Oχ
13
δH0

uI

δθZ′

+ Oχ
23

δH0
dI

δθZ′

+ Oχ
33

δb

δθZ′

)

; (B.9)

δH0
uI

δθZ′

=

[

vu√
2

+
(sinαh0 − cosαH0)

2

]

fB
u ; (B.10)

δH0
dI

δθZ′

=

[

vd√
2

+
(cosαh0 + sinαH0)

2

]

fB
d ; (B.11)

fB
u,d = g2O

A
31 − gY OA

32 − gBqB
u,dO

A
33;

δb

δθZ′

= −M1O
A
33. (B.12)

δFZ

δθγ
= ∂µ

δZµ

δθγ
− ξZMZ

δGZ

δθγ
;

δZµ

δθγ
= 0;

δGZ

δθγ
= 0; (B.13)

δFZ

δθ+
= ∂µ

δZµ

δθ+
− ξZMZ

δGZ

δθ+
;

δZµ

δθ+
= −ig2O

A
21W

−µ; (B.14)

δGZ

δθ+
= c1

δG0
1

δθ+
+ c2

δG0
2

δθ+
= c1

(

Oχ
12
δH0

uI

δθ+
+ Oχ

22

δH0
dI

δθ+
+ Oχ

32
δb

δθ+

)

+c2

(

Oχ
13

δH0
uI

δθ+
+ Oχ

23

δH0
dI

δθ+
+ Oχ

33
δb

δθ+

)

; (B.15)

δH0
uI

δθ+
= −

g2

2
(sinβG− − cos βH−); (B.16)

δH0
dI

δθ+
= −

g2

2
(cos βG− + sin βH−); (B.17)

δb

δθ+
= 0. (B.18)

δFZ

δθ−
= ∂µ

δZµ

δθ−
− ξZMZ

δGZ

δθ−
;

δZµ

δθ−
= ig2O

A
21W

+µ; (B.19)
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δGZ

δθ−
= c1

δG0
1

δθ−
+ c2

δG0
2

δθ−
= c1

(

Oχ
12

δH0
uI

δθ−
+ Oχ

22

δH0
dI

δθ−
+ Oχ

32
δb

δθ−

)

+c2

(

Oχ
13

δH0
uI

δθ−
+ Oχ

23

δH0
dI

δθ−
+ Oχ

33
δb

δθ−

)

; (B.20)

δH0
uI

δθ−
= −

g2

2
(sinβG+ − cos βH+); (B.21)

δH0
dI

δθ−
= −

g2

2
(cos βG+ + sin βH+); (B.22)

δb

δθ−
= 0. (B.23)

For the gauge boson Z ′ we obtain

δFZ′

δθZ
= ∂µ

δZ ′µ

δθZ
− ξZ′MZ′

δGZ′

δθZ
;

δZ ′µ

δθZ
= 0; (B.24)

δGZ′

δθZ
= c′1

δG0
1

δθZ
+ c′2

δG0
2

δθZ
= c′1

(

Oχ
12

δH0
uI

δθZ
+ Oχ

22

δH0
dI

δθZ
+ Oχ

32
δb

δθZ

)

+c′2

(

Oχ
13

δH0
uI

δθZ
+ Oχ

23

δH0
dI

δθZ
+ Oχ

33
δb

δθZ

)

, (B.25)

δFZ′

δθZ′

= ∂µ
δZ ′µ

δθZ′

− ξZ′MZ′

δGZ′

δθZ′

;
δZ ′µ

δθZ′

= ∂µ;
δGZ′

δθZ′

= c′1
δG0

1

δθZ′

+ c′2
δG0

2

δθZ′

. (B.26)

δFZ′

δθγ
= ∂µ

δZ ′µ

δθγ
− ξZ′MZ′

δGZ′

δθγ
;

δZ ′µ

δθγ
= 0;

δGZ′

δθγ
= 0. (B.27)

δFZ′

δθ+
= ∂µ

δZ ′µ

δθ+
− ξZ′MZ′

δGZ′

δθ+
;

δZ ′µ

δθ+
= −ig2O

A
31W

−µ; (B.28)

δGZ′

δθ+
= c′1

δG0
1

δθ+
+ c′2

δG0
2

δθ+
;

δFZ′

δθ−
= ∂µ

δZ ′µ

δθ−
− ξZ′MZ′

δGZ′

δθ−
; (B.29)

δZ ′µ

δθ−
= ig2O

A
31W

+µ;
δGZ′

δθ−
= c′1

δG0
1

δθ−
+ c′2

δG0
2

δθ−
. (B.30)

δFAγ

δθZ
= ∂µ

δAµ
γ

δθZ
;

δAµ
γ

δθZ
= 0. (B.31)

δFAγ

δθZ′

= ∂µ
δAµ

γ

δθZ′

;
δAµ

γ

δθZ′

= 0. (B.32)

δFAγ

δθγ
= ∂µ

δAµ
γ

δθγ
;

δAµ
γ

δθγ
= ∂µ. (B.33)
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δFAγ

δθ+
= ∂µ

δAµ
γ

δθ+
;

δAµ
γ

δθ+
= −ig2O

A
11W

−µ. (B.34)

δFAγ

δθ−
= ∂µ

δAµ
γ

δθ−
;

δAµ
γ

δθ−
= ig2O

A
11W

+µ. (B.35)

For W+ in the FP lagrangean we have the contributions

δFW+µ

δθZ
= ∂µ

δW+µ

δθZ
+ iξW MW

δG+

δθZ
; (B.36)

δW+µ

δθZ
= −ig2O

A
21W

+µ;
δG+

δθZ
= sin β

δH+
u

δθZ
+ cos β

δH+
d

δθZ
; (B.37)

δH+
u

δθZ
= −

i

2
fW
2u (sinβG+ − cos βH+); (B.38)

δH+
d

δθZ
= −

i

2
fW
2d (cos βG+ + sin βH+); (B.39)

fW
2u,d = g2O

A
21 + gY OA

22 + gBqB
u,dO

A
23. (B.40)

δFW+µ

δθZ′

= ∂µ
δW+µ

δθZ′

+ iξW MW
δG+

δθZ′

; (B.41)

δW+µ

δθZ′

= −ig2O
A
31W

+µ;
δG+

δθZ′

= sin β
δH+

u

δθZ′

+ cos β
δH+

d

δθZ′

; (B.42)

δH+
u

δθZ′

= −
i

2
fW
3u (sinβG+ − cos βH+);

δH+
d

δθZ′

= −
i

2
fW
3d (cos βG++sinβH+); (B.43)

fW
3u,d = g2O

A
31 + gY OA

32 + gBqB
u,dO

A
33. (B.44)

δFW+µ

δθγ
= ∂µ

δW+µ

δθγ
+ iξW MW

δG+

δθγ
; (B.45)

δW+µ

δθγ
= −ig2O

A
11W

+µ;
δG+

δθγ
= sinβ

δH+
u

δθγ
+ cosβ

δH+
d

δθγ
; (B.46)

δH+
u

δθγ
= −

i

2
fW
1u (sinβG+−cos βH+);

δH+
d

δθγ
=−

i

2
fW+

1d (cos βG++sinβH+); (B.47)

fW
1u,d = g2O

A
11 + gY OA

12 + gBqB
u,dO

A
13. (B.48)

δFW+µ

δθ+
= ∂µ

δW+µ

δθ+
+ iξW MW

δG+

δθ+
;

δG+

δθ+
= sin β

δH+
u

δθ+
+ cos β

δH+
d

δθ+
;

δW+µ

δθ+
= ∂µ + ig2(O

A
11A

µ
γ + OA

21Z
µ + OA

31Z
′µ); (B.49)

δH+
u

δθ+
= −

i√
2
g2vu −

i

2
g2

{

(sinαh0 − cosαH0) +

i

[

Oχ
11 +

(

Oχ
12c

′
2 − Oχ

13c
′
1

c1c′2 − c′1c2

)

z +

(

−Oχ
12c2 + Oχ

13c1

c1c′2 − c′1c2

)

z′
]}

; (B.50)
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δH+
d

δθ+
= −

i√
2
g2vd −

i

2
g2

{

(cosαh0 + sinαH0) +

i

[

Oχ
21 +

(

Oχ
22c

′
2 − Oχ

23c
′
1

c1c′2 − c′1c2

)

z +

(

−Oχ
22c2 + Oχ

23c1

c1c′2 − c′1c2

)

z′
]}

. (B.51)

δFW+µ

δθ−
= ∂µ

δW+µ

δθ−
+ iξW MW

δG+

δθ−
; (B.52)

δW+µ

δθ−
= 0;

δG+

δθ−
= sin β

δH+
u

δθ−
+ cos β

δH+
d

δθ−
; (B.53)

δH+
u

δθ−
= 0;

δH+
d

δθ−
= 0. (B.54)

For W− we get

δFW−µ

δθZ
= ∂µ

δW−µ

δθZ
− iξW MW

δG−

δθZ
; (B.55)

δW−µ

δθZ
= ig2O

A
21W

−µ;
δG−

δθZ
= sin β

δH−
u

δθZ
+ cos β

δH−
d

δθZ
; (B.56)

δH−
u

δθZ
=

i

2
fW+

2u (sinβG+−cosβH+);
δH−

d

δθZ
=

i

2
fW+

2d (cos βG++sin βH+). (B.57)

δFW−µ

δθZ′

= ∂µ
δW−µ

δθZ′

− iξW MW
δG−

δθZ′

; (B.58)

δW−µ

δθZ′

= ig2O
A
31W

−µ;
δG−

δθZ′

= sin β
δH−

u

δθZ′

+ cos β
δH−

d

δθZ′

; (B.59)

δH−
u

δθZ′

=
i

2
fW
3u (sinβG+ − cos βH+);

δH−
d

δθZ′

=
i

2
fW
3d (cos βG+ + sin βH+).(B.60)

δFW−µ

δθγ
= ∂µ

δW−µ

δθγ
− iξW MW

δG−

δθγ
; (B.61)

δW−µ

δθγ
= ig2O

A
11W

−µ;
δG−

δθγ
= sin β

δH−
u

δθγ
+ cos β

δH−
d

δθγ
;

δH−
u

δθγ
=

i

2
fW
1u (sinβG+−cos βH+);

δH−
d

δθγ
=

i

2
fW+

1d (cos βG++sin βH+). (B.62)

δFW−µ

δθ+
= ∂µ

δW−µ

δθ+
− iξW MW

δG−

δθ+
; (B.63)

δW−µ

δθ+
= 0;

δG−

δθ+
= sin β

δH−
u

δθ+
+ cos β

δH−
d

δθ+
; (B.64)

δH−
u

δθ+
= 0;

δH−
d

δθ+
= 0. (B.65)

δFW−µ

δθ−
= ∂µ

δW−µ

δθ−
− iξW MW

δG−

δθ−
; (B.66)
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δW−µ

δθ−
= ∂µ − ig2(O

A
11A

µ
γ + OA

21Z
µ + OA

31Z
′µ); (B.67)

δG−

δθ−
= sin β

δH−
u

δθ−
+ cos β

δH−
d

δθ−
; (B.68)

δH−
u

δθ−
=

i√
2
g2vu +

i

2
g2

{

(sinαh0 − cosαH0)

−i

[

Oχ
11 +

(

Oχ
12c

′
2 − Oχ

13c
′
1

c1c′2 − c′1c2

)

z +

(

−Oχ
12c2 + Oχ

13c1

c1c′2 − c′1c2

)

z′
]}

; (B.69)

δH−
d

δθ−
=

i√
2
g2vd +

i

2
g2

{

(cosαh0 + sinαH0)

−i

[

Oχ
21 +

(

Oχ
22c

′
2 − Oχ

23c
′
1

c1c′2 − c′1c2

)

z +

(

−Oχ
22c2 + Oχ

23c1

c1c′2 − c′1c2

)

z′
]}

. (B.70)
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