PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING FOR SISSA

RECEIVED: January 9, 2008
ACCEPTED: March 12, 2008
PUBLISHED: May 7, 2008

Trilinear anomalous gauge interactions from
intersecting branes and the neutral currents sector

Roberta Armillis,” Claudio Coriand®’ and Marco Guzzi®

@ Dipartimento di Fisica, Universita del Salento and INFN Sezione di Lecce,
Via Arnesano 78100 Lecce, Italy
b Department of Physics and Institute of Plasma Physics
University of Crete, 71003 Heraklion, Greece
E-mail: roberta.armillis@le.infn.it, claudio.coriano@le.infn.it,
marco.guzzi@le.infn.it

ABSTRACT: We present a study of the trilinear gauge interactions in extensions of the Stan-
dard Model (SM) with several anomalous extra U(1)’s, identified in various constructions,
from special vacua of string theory to large extra dimensions. In these models an axion and
generalized Chern-Simons interactions for anomalies cancellation are present. We derive
generalized Ward identities for these vertices and discuss their structure in the Stiickelberg
and Higgs-Stiickelberg phases. We give their explicit expressions in all the relevant cases,
which can be used for explicit phenomenological studies of these models at the LHC.

KEYWORDS: Anomalies in Field and String Theories, Compactification and String
Models, Intersecting branes models.


mailto:roberta.armillis@le.infn.it
mailto:claudio.coriano@le.infn.it
mailto:marco.guzzi@le.infn.it
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch

Contents

10.

11.

Introduction

1.1 Construction of the effective action

1.2 Anomaly cancellation in the interaction eigenstate basis, CS terms and

regularizations

BRST conditions in the Stiickelberg and HS phases
2.1 The Higgs-Stiickelberg phase (HS)

2.2 Slavnov-Taylor identities and BRST symmetry in the complete model

General analysis of the Z~v~ vertex

The (Z;yv) vertex

4.1 Decomposition in the interaction basis and in the mass eigenstates basis of

the Z;yy vertex
4.1.1 The my = 0 phase

4.2 The my # 0 phase
4.2.1 Chirality preserving vertices
4.2.2  Chirality flipping vertices
4.2.3 The SM limit

The vZZ vertex
5.1 The vertex in the chiral limit
5.2 ~yZZ: The my # 0 phase

Trilinear interactions in multiple U(1) models

6.1 Moving away from the chiral limit with several anomalous U(1)’s

The (vZ1Z,,) vertex
7.1 Amplitude in the m; # 0 phase

The (Z,Z,,Z,) vertex

The my # 0 phase of the (Z;Z,,Z,) triangle
Discussions

Conclusions

Gauge variations

13

21

23

25
27
29
29
31
33

34
34
37

38
40

41
43

44

48

50

50

51



B. The FP lagrangean 53

1. Introduction

Models of intersecting branes (see [1] for an overview) have been under an intense theoretical
scrutiny in the last several years. The motivations for studying this class of theories are
manifolds, being them obtained from special vacua of string theory, for instance from
the orientifold construction [2—4]. Their generic gauge structure is of the form SU(3) x
SU(2) x U(1)y x U(1)P, where the symmetry of the Standard Model (SM) is enlarged with
a certain number of extra abelian factors (p). Several phenomenological studies [5—10]
have allowed to characterize their general structure, whose string origin has been analyzed
at an increasing level of detail [11, 12] down to more direct issues, connected with their
realization as viable theories beyond the SM. Related studies of the Stiickelberg field [13]
in a non-anomalous context have clarified this mechanism of mass generation and analyzed
some of its implications at colliders both in the SM and in its supersymmetric extensions.

In scenarios with extra dimensions where the interplay between anomaly cancellations
in the bulk and on the boundary branes is critical for their consistency, very similar models
could be obtained following the construction of [14], with a suitable generalization in order
to generate at low energy a non abelian gauge structure.

Specifically, the role played by the extra U(1)’s at low energy in theories of this type
after electroweak symmetry breaking has been addressed in [5—7], where some of the
quantum features of their effective actions have been clarified. These, for instance, concern
the phases of these models, from their defining phase, the Stiickelberg phase, being the
anomalous U(1) broken at low energy but with a gauge symmetry restored by shifting
(Stiickelberg) axions, down to the electroweak phase - or Higgs-Stiickelberg phase, (HS) -
where the vev’s of the Higgs of the SM combine with the Stiickelberg axions to produce a
physical axion [5] and a certain number of goldstone modes. The axion in the low energy
effective action is interesting both for collider physics and for cosmology [8], working as a
modified Peccei-Quinn (PQ) axion. In this respect some interesting proposals to explain an
anomaly in gamma ray propagation as seen by MAGIC [15] using a pseudoscalar (axion-
like) has been presented recently, while more experimental searches of effects of this type
are planned for the future by several collaborations using Cerenkov telescopes (see [15] for
more details and references). Other interesting revisitations of the traditional Weinberg-
Wilczek axion [16] to evade the astrophysical constraints and in the context of Grand
Unification/mirror worlds [17] may well deserve attention in the future and be analyzed
within the framework that we outline below. At the same time, comparisons between
anomalous and non anomalous string constructions of models with extra Z’s should also
be part of this analysis [18].

The presence of axion-like particles in effective theories is, in general, connected to an
anomalous gauge structure, but for reasons which may be rather different and completely



unrelated, as discussed in [8]. For the rest, though, the study of the perturbative expansion
in theories of this type is rather general and shows some interesting features that deserve
a careful analysis. In [6, 7] several steps in the analysis of the perturbative expansion
have been performed. In particular it has been shown how to organize the loop expansion
in a gauge-invariant way in 1/M;, where M; is the Stiickelberg mass. A way to address
this point is to use a typical R¢ gauge and follow the pattern of cancellation of the gauge
parameter in order to characterize it. This has been done up to 3-loop level in a simple
U(1) x U(1) model where one of the two U(1)’s is anomalous.

The Stiickelberg symmetry is responsible for rendering the anomalous gauge bosons
massive (with a mass Mj) before electroweak symmetry breaking. A second scale M
controls the interaction of the axions with the gauge fields but is related to the first by
a condition of gauge invariance in the effective action [8]. In general, for a theory with
several U(1)’s, there is an independent mass scale for each Stiickelberg field.

In the case of a complete extension of the SM incorporating anomalous U(1)’s, all the
neutral current sectors, except for the photon current, acquire an anomalous contribution
that modifies the trilinear (chiral) gauge interactions. For the Z gauge boson this anoma-
lous component decouples as M7 gets large, though it remains unspecified. For instance,
in theories containing extra dimensions it could even be of the order of 10 TeV’s or so, in
general being of the order of 1/R, where R is the radius of compactification. In other con-
structions [4] based on toroidal compactifications with branes wrapping around the extra
dimensions, their masses and couplings are expressed in terms of a string scale M, and
of the integers characterizing the wrappings [9]. Beside the presence of the extra neutral
currents, which are common to all the models with extra abelian gauge structures, here,
in addition, the presence of chiral anomalies leaves some of the trilinear interactions to
contribute even in the massless fermion (chiral) limit, a feature which is completely absent
in the SM, since in the chiral limit these vertices vanish.

As we are going to see, the analysis of these vertices is quite delicate, since their
behaviour is essentially controlled by the mass differences within a given fermion genera-
tion [7], and for this reason they are sensitive both to spontaneous and to chiral symmetry
breaking. The combined role played by these sources of breaking is not unexpected, since
any pseudoscalar induced in an anomalous theory feels both the structure of the QCD
vacuum and of the electroweak sector, as in the case of the Peccei-Quinn (PQ) axion.
In this work we are going to proceed with a general analysis of these vertices, extending
the discussion in [7]. Our analysis here is performed at a field theory level, leaving the
phenomenological discussion to a companion work. Our work is organized as follows.

After a brief summary on the structure of the effective action, which has been included
to make our treatment self-contained, we analyze the Slavnov-Taylor identities of the the-
ory, focusing our attention on the trilinear gauge boson vertices. Then we characterize the
structure of the Z~~ and ZZ~ vertices away from the chiral limit, extending the discussion
presented in [7]. In particular we clarify when the CS terms can be absorbed by a redis-
tribution of the anomaly before moving away from the chiral limit. In models containing
several anomalous U(1)’s different theories are identified by the different partial anomalies
associated to the trilinear gauge interactions involving at least three extra Z’s. In this
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Figure 1: Counterterms allowed in the low energy effective action in the chiral limit: anomalous
contributions (A), CS interaction (B), WZ term (C) and b— B mixing contribution (D). In particular
the bilinear mixing of the axions with the gauge fields is vanishing only for on-shell vertices and is
removed in the R¢ gauge in the WZ case. A discussion of this term and its role in the GS mechanism
can be found in a forthcoming paper.

case the CS terms are genuine components which are specific for a given model and are
accompanied by a specific set of axion counterterms. Symmetric distributions of the partial
anomalies are sufficient to exclude all the CS terms, but these particular assignments may
not be general enough.

Away from the chiral limit, we show how the mass dependence of the vertices is affected
by the external Ward identity, which are a generic feature of anomalous interactions for
nonzero fermion masses. This point is worked out using chiral projectors and counting
the mass insertions into each vertex. On the basis of this study we are able to formulate
general and simple rules which allow to handle quite straightforwardly all the vertices of
the theory. We conclude with some phenomenological comments concerning the possibility
of future studies of these theories at the LHC. In an appendix we present the Faddeev-
Popov lagrangean of the model, which has not been given before, and that can be useful
for further studies of these theories.

1.1 Construction of the effective action

The construction of the effective action, from the field theory point of view, proceeds as
follows [5, 7].

One introduces a set of counterterms in the form of CS and WZ operators and requires
that the effective action is gauge invariant at 1-loop. Each anomalous U(1) is accompanied
by an axion, and every gauge variation of the anomalous gauge field can be cancelled by
the corresponding WZ term. The remaining anomalous gauge variations are cancelled by
CS counterterms. A list of typical vertices and counterterms are shown in figure 1.

We consider the simplest anomalous extension of the SM with a gauge structure of the
form SU(3) xSU(2) x U(1)y x U(1) p model with a single anomalous U(1)p. The anomalous
contributions are those involving the B gauge boson and involve the trilinear (triangle)
vertices BBB, BYY,BBY, BWW and BGG, where W’s and the G’s are the SU(2) and
SU(3) gauge bosons respectively. All the remaining trilinear interactions mediated by
fermions are anomaly-free and therefore vanish in the massless limit. Therefore the axion
(b) associated to B appears in abelian counterterms of the form bFgAFp, bFg AFy ,bFy AFy
and in the analogous non-abelian ones bTrW A W and bTrG A G. In the absence of a
kinetic term for the axion b, its role is unclear: it allows to “cancel” the anomaly but can



be gauged away. As emphasized by Preskill [19], the role of the Wess-Zumino term is, at
this stage, just to allow a consistent power counting in the perturbative expansion, hinting
that an anomalous theory is non-renormalizable, but, for the rest, unitary below a certain
scale. Theories of this type are in fact characterized by a unitarity bound since a local
counterterm is not sufficient to erase the bad high energy behaviour of the anomaly [20].
Although the structure of the vertices constructed in this work is identified using the WZ
effective action at the lowest order (using only the axion counterterm), their extension to
the Green-Schwarz case is straightforward. In this second case the vertices here defined
need to be modified with the addition of extra massless poles on the external gauge lines.
The b field remains unphysical even in the presence of a Stiickelberg mass term for the B
field, ~ (0b — M B)? since the gauge freedom remains and it is then natural to interpret b
as a Nambu-Goldstone mode. In a physical gauge it can be set to vanish.

Things change drastically when the B field mixes with the other scalars of the Higgs
sector of the theory. In this case a linear combination of b and the remaining CP-odd
phases (goldstones) of the Higgs doublets becomes physical and is called the axi-Higgs.
This happens only in specific potentials characterized also by a global U(1) pg symmetry
(Vpg) [5] which are, however, sufficiently general. In the absence of Higgs-axion mixing
the CP odd goldstone modes of the broken theory, after electroweak symmetry breaking,
are just linear combinations of the Stiickelberg and of the goldstone mode of the Higgs
potential and no physical axion appears in the spectrum.

For potentials that allow a physical axion, even in the massless case, the axion mass
can be lifted by the QCD vacuum due to instanton effects exactly as for the Peccei-Quinn
axion, but now the spectrum allows an axion-like particle.

1.2 Anomaly cancellation in the interaction eigenstate basis, CS terms and
regularizations

The anomalies of the model are cancelled in the interaction eigenstate basis of (b, Ay, B, W)
and the CS and WZ terms are fixed at this stage. The B field is massive and mixes with
the axion, but the gauge symmetry is still intact. The Ward identities of the theory for the
triangle diagrams assume a nontrivial form due to the Bdb mixing. In the case of on-shell
trilinear vertices one can show that these mixing terms vanish.

The CS counterterms are necessary in order to cancel the gauge variations of the Y, W
and G gauge bosons in anomalous diagrams involving the interaction with B. These are
the diagrams mentioned before. The role of these terms is to render vector-like at 1-loop
all the currents which become anomalous in the interaction with the B gauge boson. For
instance, in a triangle such as Y BB, the Ay B A Fg CS term effectively “moves” the chiral
projector from the Y vertex to the B vertex symmetrically on the two B’s, assigning the
anomalies to the B vertices. These will then be cancelled by the axion b via a suitable WZ
term (bFp A Fy).

The effective action has the structure given by

S = 8y+ San + Sas + Scs (1.1)



where Sy is the classical action. It is a canonical gauge theory with dimension-4 operators
whose explicit structure can be found in [7]. In eq. (1.1) the anomalous contributions com-
ing from the 1-loop triangle diagrams involving abelian and non-abelian gauge interactions

are summarized by the expression
1 1 1
San = §<TwaBWW> + E(TBGGBGG> -+ §<TBBBBBB>
1 1
—I—§<TByyBYY> + E(TYBBYBB% (1.2)

where the symbols () denote integration [6]. In the same notations the Wess Zumino (WZ)
(or, equivalently, Green-Schwarz GS) counterterms are given by

_ Css Cyy Cyp
Sas = M <bFB/\FB>+ i <be/\Fy>—|— N <be/\FB>
F W A oW D G« oG
L (OTr Y A FY)) 4 2 (e[S A FOY), (1.3)

and the gauge dependent CS abelian and non abelian counterterms [12] needed to cancel
the mixed anomalies involving a B line with any other gauge interaction of the SM take

the form
Scs = +d1(BY A Fy) +do(YB A Fp)
+e1 (477 B CONP) + ep (e B, CN3)). (1.4)
Explicitly
(Tpww BWW) = /d:r dy dzTi—}%%(z,x,y)BA(z)W/i”(x)WJ’»’(y) (1.5)
and so on.

The non-abelian CS forms are given by

1 ; 1 i ;

C’SEP(Q) =5 [WZ (E‘fip + 392 z—:’]kW3W5> + cyclic} , (1.6)
1 1

Cons? = & [ij (nyp + 59 fabCGgG;;> + cyclz’c} : (1.7)

In our conventions, the field strengths are defined as

Y, = 0.W),—o,W), — ngijngWf = qu — ngijngwf (1.8)
Facfuy = C%fo - 8I/GZ, - g3fachZGlc, = Fa(,;,uz/ - g3fachZGzcn (19)

whose variations under non-abelian gauge transformations are

1, . ,

5SU(2)CE%2) =5 [(%9 (ﬂ%p) + cyclzc] , (1.10)
1 - .

50 Ciss®) = = |9,0" (EE,,) + eyclic] (L.11)

where F' denotes the “abelian” part of the non-abelian field strength.



Coming to the formal definition of the effective action, interpreted as the generator of
the 1-particle irreducible diagrams with external classical fields, this is defined, as usual,
as a linear combination of correlation functions with an arbitrary number of external lines
of the form Ay, B, W, G, that we will denote conventionally as W(Y, B, W). It is given by

m—l—nz
WYB WG Z Z mlnz /d$1 dxnldyl dyn TAl Any - an( Iy - "xn17y1"'yn2)

ni=1lngs=1

BM (331) ...BM (wn1)AYM1 (yl) S Ayun2 (ynz) +...

where we have explicitly written only its abelian part and the ellipsis refer to the additional
non abelian or mixed (abelian/non-abelian) contributions. We will be using the invariance
of the effective action under re-parameterizations of the external fields to obtain information
on the trilinear vertices of the theory away from the chiral limit. Before coming to that
point, however, we show how to fix the structure of the counterterms exploiting its BRST
symmetry. This will allow to derive simple STI’s for the action involving the anomalous
vertices.

2. BRST conditions in the Stiickelberg and HS phases

We show in this section how to fix the counterterms of the effective action by imposing
directly the STTI’s on its anomalous vertices in the two broken phases of the theory, thereby
removing the Higgs-axion mixing of the low energy effective theory. As we have already
mentioned, the lagrangean of the Stiickelberg phase contains a coupling of the Stiickelberg
field to the gauge field which is typical of a goldstone mode. In [6, 7] this mixing has
been removed and the WZ counterterms have been computed in a particular gauge, which
is a typical R¢ gauge with { = 1. Here we start by showing that this way of fixing the
counterterms is equivalent to require that the trilinear interactions of the theory in the
Stiickelberg phase satisfy a generalized Ward identity (STT).

After electroweak symmetry breaking, in general one would be needing a second gauge
choice, since the new breaking would again re-introduce bilinear derivative couplings of
the new goldstones to the gauge fields. So the question to ask is if the STI’s of the first
phase, which fix completely the counterterms of the theory and remove the b-B mixing, are
compatible with the STI’s of the second phase, when we remove the coupling of the gauge
bosons to their goldstones. The reason for asking these questions is obvious: it is convenient
to fix the counterterms once and for all in the effective lagrangeans and this can be more
easily done in the Stiickelberg phase or in the HS phase depending on whether we need the
effective action either expressed in terms of interactions or of mass eigenstates respectively.
In both cases we need generalized Ward identities which are local. The presence of bilinear
mixings on the external lines of the 3-point functions would render the analysis of these
interactions more complex and essentially non-local.

This point is also essential in our identification of the effective vertices of the physical
gauge bosons since, as we will discuss below, the definition of these vertices is entirely based
on the possibility of parameterizing the anomalous effective action, at the same time, in



the interaction basis and in the mass eigenstate basis. We need these mixing terms to
disappear in both cases. This happens, as we are going to show, if both in the Stiickeberg
phase and in the HS phase we perform a gauge choice of R¢ type (we will choose { = 1).
These technical points are easier to analyze in a simple abelian model, following the lines
of [6]. In this model the B is a vector-axial vector (V — A) anomalous gauge boson and A
is vector-like and anomaly-free.

We will show that in this model we can fix the counterterms in the first phase, having
removed the b-B mixing and then proceed to determine the effective action in the HS
phase, with its STI’s which continue to be valid also in this phase.

Let’s illustrate this point in some detail. We recall that for an ordinary (non abelian)
gauge theory in the exact (non-broken) phase the derivation of the conditions of BRST
invariance follow from the well known BRST variations in the R¢ gauge

5BRST Az = SAZ = wDZbe (2.1)
1

OBrsT c* = sc® = —§wgfabccbcc (2.2)

0BrsT C® = s¢c® = %OHA”G. (2.3)

These involve the nonabelian gauge field A, the ghost (c*) and antighost (¢%) fields, with
w being a Grassmann parameter. We will be interested in trilinear correlators whose STI’s
are arrested at 1-loop level and which involve anomalous diagrams. For instance we could
use the invariance of a specific correlator (¢AA ) under a BRST transformation in order to
obtain the generalized WI’s for trilinear gauge interactions

s (0T () AL (y) AS(2)|0) = 0. (2.4)
These are obtained from the relations (2.3) rather straightforwardly
s (0| & (2) A} (y) A5 (2)]0) = (0IT (s (2)) A} (y) A5 (2)[0) +
+(OIT & () (s A7 () A5 (2)]0) + (01T & (2) A7 (y) (s A5 (2))0)
= 0. (2.5)
In fact, by using eq. (2.1) and (2.3) we obtain
s {0IT &(2) A} (y) A5 (2)]0) = %(0|Tw5uA”aA2(y)A§(Z)|0> +
+H{0|T e (x)wDyey(y) Ap (2)]0) + (0T & () A} (y)w Dy e (2) 0)
= 0. (2.6)

Choosing £ = 1 we get

O OIT A#(2) A (y) 5 2) )
HOIT & ()80, — 01" Ay )l () A5(2)]0)

+(0|T & (x) AL (y)[6°™0p — g.f ™ Apr(2)]em (2)]0) = 0.



Figure 2: Graphical representation of eq. (2.8) at any perturbative order.

The two fields A, 4(y)ci(y) e Apr(2)cm(z) on the same spacetime point do not contribute
on-shell and integrating by parts on the second and third term we obtain

o (01T 4043 () A5(2)0)— 5 (01T € 0)e ()45 2)10)— 55 01T ()44 ) (2) 0) =0

(2.8)

which is described diagrammatically in figure 2. Let’s now focus our attention on the A-B
model of [6] where we have an anomalous generator Yp. This model describes quite well
many of the properties of the abelian sector of the general model discussed in [7] with a
single anomalous U(1). It is an ordinary gauge theory of the form U(1)4 x U(1)p with B
made massive at tree level by the Stiickelberg term

1
Lss = 5(8ub + MIB;L)2- (29)
This term introduces a mixing M;B,0"b which signals the presence of a broken phase in

the theory. Introducing the gauge fixing lagrangean

Lgj = —2%3(?5[3#])2, (2.10)

F3[B,] = 0,B" — ¢gMb, (2.11)
we obtain the partial contributions (mass term plus gauge fixing term) to the total action

1
Lsi+Lor =5 [(8,&)2 + M{B,B" — (8,B")* - §BM12b2] (2.12)

and the corresponding Faddeev-Popov lagrangean

0Fn oBH* ob
= — = M, —— 2.1
Lrp=cp 505 cB = CB [6“ 505 My 505 }CB, (2.13)

with ¢p and ¢p are the anticommuting ghost/antighosts fields. It can be written as
Lrp=_¢Cg (D+§BM12)CB, (2.14)
having used the shift of the axion under a gauge transformation

b = —M6. (2.15)



In the following we will choose £ = 1. The anomalous sector is described by
San = Sl + 83

2
Si= [drdyds (AT (002 () 40)A0))

3
S3 = /dwdy dz (%—? TX’XJA(Q:,y,z)BA(z)Bu(a:)B,,(y)>, (2.16)

where we have collected all the anomalous diagrams of the form (AVV and AAA) and
whose gauge variations are

1 1 1
553 [TAV\/BAA] = Eag(ﬁ)z [FA A\ FAQB]
1 1 ap 3

having left open the choice over the parameterization of the loop momentum, denoted by
the presence of the arbitrary parameter 3 with

) ) an )

w0 =g taal  ®=3 =g (2.18)
while

1 7 2

5514 [TAvaAA] = Eal(ﬁ)z [FB A FAHA] . (2.19)

We have the following equations for the anomalous variations

.9 . 3
1939 1 igp ap 3
0BLan = g! A a3(ﬁ)ZFA NFp0p + 3—'!9 ?"ZFB N Fpop
.9
) 2
SaLlan = BIA 4, (B)ZFp A Fabla, (2.20)

2! 4

while L., the axionic contributions (Wess-Zumino terms), needed to restore the gauge
symmetry violated at 1-loop level, are given by

C C
Ly =—34pFyNFy+ —BBbFp A Fp. 2.21
b= PEANFa+ — PO Fp A Fp (2.21)
The gauge invariance on A requires that 3 = —1/2 = [y and is equivalent to a vec-

tor current conservation (CVC) condition. By imposing gauge invariance under B gauge
transformations, on the other hand, we obtain

85 (Lo + Lan) =0 (2.22)

which implies that

igpl M
314 "M

1 M
Can = 7 @) i Cpp = (2.23)

This procedure, as we are going to show, is equivalent to the imposition of the STI on the
corresponding anomalous vertices of the effective action. In fact the counterterms C'44 and
Cpp can be determined formally from a BRST analysis.

— 10 —
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Figure 3: Representation in terms of Feynman diagrams in momentum space of the Slavnov-
Taylor identity obtained in the Stiickelberg phase for the anomalous triangle BAA. Here we deal
with correlators with non-amputated external lines. A CS term has been absorbed to ensure the
conserved vector current (CVC) conditions on the A lines.

In fact, the BRST variations of the model are defined as

dBrsT By = woucp
dprsT b = —wMicp

0BRST Ay = wdyca

dprsTcp = 0

w

0BRST CB = ifé = —(0,B* — {pMib). (2.24)

B $B

To derive constraints on the 3-linear interactions involving 2 abelian (vector-like) and one
vector-axial vector gauge field, that we will encounter in our analysis below, we require the
BRST invariance of a specific correlator such as

0BRST <0|T EB(z)Au($)Ay(y)|0> =0, (2.25)

figure 5 shows the difference between the non-amputated and the amputated correlators,
and applying the BRST operator we obtain
w
& (0T [0rB*(2) =€ M1b(2)] Ay () Ay ()[0) + (O[T Ep(2)wdjca (@) Ay (y)|0)
+ (0|7 ¢p(2)Au(z)wdyca(y)|0) =0, (2.26)

with the last two terms being trivially zero. Choosing g = 1 we obtain the STI (see figure
3) involving only the WZ term and the anomalous triangle diagram BAA. This reads

0
w@IT BM2)Au(2) Ay (y)[0) — My {0|T b(2) Ay () Ay (y)]0) = 0. (2.27)
A similar STI holds for the BBB vertex and its counterterm
0
@@\T B(2)Bu(2)By,(y)]0) — M1(0|T b(z) By (2) B, (y)|0) = 0. (2.28)

These two equations can be rendered explicit. For instance, to extract from (2.27) the
corresponding expression in momentum space and the constraint on C'44, we work at the
lowest order in the perturbative expansion obtaining

1 0

1 g o B(2) Ay(2) Ay (y) [JsB] [TAJ* 0) = M1 (0| b(2) Ayu(2) Ay (y) [bFa A Fa] [0) = 0,

(2.29)

— 11 —



where we have introduced the notation [ ] to denote the spacetime integration of the vector
(J) and axial current (J5) to their corresponding gauge fields

JA = —gapy'pA,, (2.30)
Js B = —gpin"y ¢ B, (2.31)
~ . mye —
Js G = 2ign 3 -09°0G (2332)

where Mp is the mass of the B gauge boson in the Higgs-Stiickelberg phase that we will
analyze in the next sections.

In momentum space this STT represented in figure 3 becomes ({5 = 1)

1 Y igA)x’ ig ! igw/ by
— 2 |ig? [— ] [— W} [— } —9Bga) AM (ky, ks)
! [ } k2 — M? k3 k3 [ ]

{ ig,u,u’ LGy v
—2 M — — V k1,ko) =0 2.33
' [k2 iﬂf} |: k% ] [ k% ] A (k1. b2) 7 ( )

where the factor % comes from the presence in the effective action of a diagram with
2 identical external lines, in this case two A gauge bosons, and the factor 2, present in
both terms, comes from the contraction with the external fields. Using in (2.33) the
corresponding anomaly equation

k)\AAMV(kl, ]{72) = ag(ﬁ(])ewjaﬁkilakigﬁ (2.34)
and the expression of the vertex V" (ki, k2)
22 oB Ly kog (2.35)

we obtain

: - . 1C
[ : } [_zgw ] [—Zgw ] [Z 989403(B0) e P hiakap — 2 My AﬁAE“mﬁkmkw =0,

k? — M} ki k3
(2.36)
from which we get
, 4C igpgil M
igpgaas(Bo) =2 M ]\IQA = Can = gggA 1 as(Bo) 0 (2.37)

This condition determines C'44 at the same value as before in (2.25), using the constraints
of gauge invariance, having brought the anomaly on the B vertex (fy = —1/2).

In the case of the second STI given in (2.28), expanding this equation at the lowest
relevant order we get

1 0

g@(WTB)\(Z)Bu("E)Bu(y) [J5B]? [0) — M, (0|T b(2) B,,(z) B, (y) [bF5 A Fp] |0) = 0. (2.38)
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Also in this case, setting {p = 1, we re-express (2.38) as

1 g\ LgAN LG 1Gu/
—3! A _ _ [ ad _ 3 A)\;u/ k
517 [Zk ] [ k2—M12] [ k:%—Mf} [ k:g—Mf] [~95] (k1 o)

{ iguu’ LGy my
—2M — — VE (k1,k2) = 0, (2.39

Jetvn] a2 [ 2he] v -0 e
where, similarly to BAA, the factor % comes from the 3 identical gauge B bosons on the
external lines, the coefficient 3! in the first term counts all the contractions between the
vertex AM?¥ and the propagators of the B gauge bosons, while the coefficient 2 comes from
the contractions of V5" with the external lines. From eq. (2.39) we get

: G iguv/ .3 \uy w B
- - FAAM® (ky, o) —2My VA (K1, ko) | =0. (240
[k;?_Ml?} [ k%—Mf} [ k%_Mlgj| [ZQB A (k1,k2) 1V (1, ko) (2.40)

as depicted in figure 6.
The anomaly equation for BBB distributes the total anomaly a,, equally among the
three B vertices, therefore

BAAM (ki kp) = S gy, (2.41)
and for the V5" (ki1, k2) vertex we have
Véw(k‘l,kig) == Tewjaﬁklakgﬁ. (2.42)

Inserting (2.41), (2.42) into (2.40) we obtain

AC L g}
BB N _igplan 7
M 2 43 M

ig?é a?n — 2M1 (2.43)
in agreement with (2.25). Therefore we have shown that if we gauge-fix the effective la-
grangean in the Stuckelberg phase to remove the b-B mixing and fix the CS counterterms so
that the anomalous variations of the trilinear vertices are absent, we are actually imposing
generalized Ward identities or STT’s on the effective action. On this gauge-fixed axion the
b-B mixing is completely absent also off-shell and the structure of the trilinear vertices is
rather simple. We need to check that these STI’s are compatible with those obtained after
electroweak symmetry breaking, so that the mixing is absent off-shell also in the physical
basis.

2.1 The Higgs-Stiickelberg phase (HS)

Now consider the same effective action of the previous model after electroweak symmetry
breaking. If we interpret the gauge-fixed action derived above as a completely determined
theory where the counterterms have been found by the procedure that we have just illus-
trated, once we expand the fields around the Higgs vacuum we encounter a new mixing of
the goldstones with the gauge fields. Due to Higgs-axion mixing [6] the goldstones of this
theory are extracted by a suitable rotation that allows to separate physical from unphysical

- 13 —



, . , B
l l l lg g 2 kk »
B SA
R-M2 k2 k?

A
A A w
GB
—2M, -~ — 2 Myg8/° -~ =0
A A Y

Figure 4: Diagrammatic representation of eq. (2.47) in the HS phase, determining the counterterm
Caa. A CS term has been absorbed by the CVC conditions on the A gauge boson.

degrees of freedom. In fact the Stiickelberg is decomposed into a physical axi-Higgs and
a genuine goldstone. It is then natural to ask whether we could have just worked out the
lagrangean directly in this phase by keeping the coefficients in front of the counterterms of
the theory free, and had them fixed by imposing directly generalized WI’s in this phase,
bypassing completely the first construction. As we are now going to show in this model the
counterterms are determined consistently also in this case at the same values given before.

Let’s see how this happens. In this phase the mixing that needs to be eliminated is
of the form B*0,Gp, where Gp is the goldstone of the HS phase. In this case we use the
gauge-fixing lagrangean

1 1
%5 %5 (OuB" —£pMpGp), (2.44)

and the BRST transformation of the antighost field ¢g is given by

Lo =— (H)QZ_

w w
OprsT ep = —Ff = — (0,B" — {pMpGp). (2.45)
B 3z
Also in this case we use the 3-point function in eq. (2.25) and { = 1 to obtain the STI
0
5.1 0T B (2)Au(2) Ay ()|0) — Mp(0|T Gp(2)Au(@) A, (9)[0) = 0. (2.46)

To get insight into this equation we expand perturbatively (2.46) and obtain

o 5 O BA=) 4, () A ) [ B] LA )
= My (01T G ()4, () A ) (G Fa A F][0)
— M (O[T Gp(2) A(2) Au(y) | 5G| [TA]0) = 0, (247)

where the first term is the usual triangle diagram with the BAA gauge bosons on the
external lines, the second is a WZ vertex with Gp on the exernal line and the third term,
which is absent in the Stiickelberg phase, is a triangle diagram involving the Gp gauge
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Figure 5: Relation between a correlator with non amputated external lines (left) used in an STI
and an amputated one (right) used in the effective action for a triangle vertex and for a CS term.

w B
. . . }\‘ B b
l l i .3 _
ig,’k 2 M, -~ = 0
kZ_MIZ kIZ—MIZ k22_M12 B
B " B

Figure 6: Diagrammatic representation of (2.40) in the Stiickelberg phase, determining the coun-
terterm Cpgpg.

boson that couples to the fermions by a Yukawa coupling (see figure 4). In the Stiickelberg
phase there is no analogue of this third contribution in the cancellation of the anomalies
for this vertex, since b does not couple to the fermions.

Notice that the STI contains now a vertex derived from the bF4 A F4 counterterm, but
projected on the interaction GpFs A F4 via the factor M;/Mp. This factor is generated by
the rotation matrix that allows the change of variables (¢y,b) — (x5, Gp) and is given by

U <—cos€B sm93> (2.48)

sinfl; cosfp

with 65 = arccos(M;/Mp) = arcsin(qpgzv/Mp). We recall [6] that the axion b can be
expressed as linear combination of the rotated xy and Gp of the form

v M
b=ai1xp+aGp = 1595 Xz + G, (2.49)
B

x and G p of the form its mass My through the combined Higgs-Stiickelberg mechanism

Mg = /M + (g5950)% (2.50)

— 15 —



Now we express the STT given in (2.46) choosing {p = 1

12 |:Zk,’)\,i| |: Zg)\)\’ :| |:_igMM/:| |:_7:gl/1/’:| [_ngi] A)\“V(mf,kl,k,’z)

2! k2 - M k2 k3
[y (2] [ o
k? — M3, k3 k3 Mp 4
L. 2 .My iz _
+§ QZngA <21 M—B> AGBAA(mf,kl,kg)} —0, (2.51)

where the [GpF4 A F4| interaction has been obtained from the [bF4 A F4] vertex by pro-
jecting the b field on the field G'g, and the coefficient 2im¢/Mp comes from the coupling of
G p with the massive fermions [6]. The remaining coefficient M7 /Mp rotates the VX Y(k1, ko)
vertex as in eq. (2.51).

Replacing in (2.51) the WI obtained for a massive AVV vertex

AN (B, 1mp, ki ka) = as(B)e PRRS + 2mp AR (g, Ky, k) (2:52)

where

1
A‘“’(mf,k‘l,/@) = mf&‘aﬁwjklukg’ﬁ <2—7T2> [(mf)

1 1—x 1
1 = — dxd 2.53
(my) /0 /0 v ym% + (z — V)ak? + (y — 1)yk? — 2zyk; - ko (253)
and the expression for the V" (ki, ko) vertex
VXV(kl,kig) = —E‘uyaﬁk’lak‘gg, (2.54)

we get

LG\ 1Gup :| |:iguu’:| {’L 2 uvaf
9B9a a3(Bo) € kiaky
[k‘Q - M%] [ ki k3 ’
4C 44

+2ingi mg A‘uy(mf,kl,kg) — 2MB Tewjaﬁklakgﬁ

my

~2igpg4 Mp T

Al aa(my, ki, k‘2)} = 0. (2.55)

Since A‘(?;AA = AM | eq. (2.55) yields the same condition obtained by fixing C'44 in the
Stiickelberg phase, that is

4C a4

igrg?1
Caa = IBIA a3(Bo)

M
L9
=2M — 2.
igBgaas(Bo) i = 5 1 YR (2.56)
A similar STT can be derived for the BB B vertex in this phase, obtaining
0
7.3 01T B*(2)By(2)By(y)|0) — Mp(0|T G(2)Bu(x)B,(y)|0) = 0. (2.57)
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Expanding perturbatively (2.57) we obtain

o 01T B () BBy (v) 15 B 1)
— Mp (0|T Gp(2)Bu(x)B,(y) [GpFp A Fg]|0)
~ My (O[T Gp(2) By(@) Bu(y) | 5G| 115 B 0) =0, (2.58)

that gives
1 g N LgAN LG 1Gu/
— 3l A _ B _ 3 Apv
5% [Zk ] [ k2 —ng [ k2 —M?J [ K2 — M3 [—gp] AY(my, k1, ko)
¢ Gy 1Gu’ My
- M - - VY (ky, k
wleag) i) ) {2 e

+5 2igp <2Z M—B> AZI;BB(mf,kl,kg)} =0,
(2.59)

where we have defined
A / dq Tr[Y°(f —F +m" (4 — K +mpy*° (g +my)]
B Ut R | GRSV
+ {M U, kl — kg} . (260)

Since this contribution is finite, it gives

v dq Lopl-a 2mdieh Py ko
AGppp = / @) / / dxdy e = (2.61)
0 7o q2—k%(y—1)y—k%(a:—1)x+2wy—mff]

and we obtain again

1
A/éI;BB = AMV = Eaﬁuuklplkzﬁmf <ﬁ> I(mf), (262)
Using the anomaly equations in the chirally broken phase
EAAY (ky, k) = %”g—:“”o‘ﬁk?kg + 2m AR (2.63)
and the expression of the vertex
4C
VE (ky, ko) = %ewﬁkmk%, (2.64)
we obtain
.3
tgpl a, M
=-2B__n 2.
Csr=75"13 14, (2.65)
Expanding to the lowest nontrivial order this identity we obtain
[ a 4 My
Z<?"€MVaﬁk1ak2ﬁ+2mfA/W> —QMB (MCBB MB)EMuaﬁk‘lak‘gg MB (22M—B> AéI;BB 0

(2.66)
which can be easily solved for Cpp, thereby determining Cpp exactly at the same value
inferred from the Stiickelberg phase, as discussed above.
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Figure 7: The anomalous effective action in the two basis in the R, gauge where we have eliminated
the mixings on the external lines in both basis.

2.2 Slavnov-Taylor identities and BRST symmetry in the complete model

It is obvious, from the analysis presented above, that a similar treatment is possible also in
the non-abelian case, though the explicit analysis is more complex. The objective of this
investigation, however, is by now clear: we need to connect the anomalous effective action
of the general model in the interaction basis and in the mass eigenstate basis keeping into
account that both phases are broken phases. In figure 7 this point is shown pictorially.
In both cases the bilinear mixings of the goldstones with the corresponding gauge fields,
Z0Gyz,Z'0G', have been removed and the counterterms in the eigenstate basis have been
fixed as in [7], where, as we have just shown for the A-B model. Equivalently, we can fix
the counterterms in the HS phase by imposing the STI’s directly at this stage, thereby
defining the anomalous effective action plus WZ terms completely. For this we need the
BRST transformation of the fundamental fields. As usual, in the gauge sector these can be
obtained by replacing the gauge parameter in their gauge variations with the corresponding
ghost fields times a Grassmann parameter w. Denoting by s the BRST operator, these are

given by
sAZ =woycy +1 Oﬁ gow (C_W/j_ — C+Wu_) ) (2.67)
§Z, = wdcz +i05 gow (Wi —cw)), (2.68)
sZL = WauCZ’ —|—’LO§41 go w (C_W/j_ - C+Wl"_) (269)

s W: = wd,ct — iggW:w (Of‘lcﬁ, + O ey + O?ﬁczl)
+292 (OﬁA’yu + O?l ZM + O?ﬁZL) WC+7
sW, = wdyc™ +igaW, w (Oﬁcfy + Oflcz + O?lczz)
—igs (O Ay + O3y Z + O34 Z], ) we™ (2.70)
where the Of} are matrix elements defined exactly as in eq. (2.91) below. To determine the

transformations rules for the ghost/antighosts we recall that the gauge-fixing lagrangeans
in the R¢ gauge are given by

1 1
/ 1 / 1 ’
ng = —262/ f[Z/7 GZ ]2 — _252, (0MZ’“ _ §Z’MZ’GZ )27 (272)
A 1 1
Lof = g, 1AL = —5g (0u4h), (2.73)
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1 - -
Ly = —E—Wf[wtcﬂf[w ,G7] =

_ _Siw(auww + i&w My G (0,W ™ — i&w Mw G ™), (2.74)

where GZ, GZ', Gt e G~ are the goldstones of Z, Z', W+ and W~.
In particular, the FP (ghost) part of the lagrangean is canonically given by

—a5‘7:a[Z> Z] b

Lrpp=—cC s ¢ (2.75)

where the sum over a and b runs over the fields Z, Z’, A, W+ e W~ and is explicitly
given in the appendix. For the BRST variations of the antighosts we obtain

séa:—g—w}"“ a=2,7"v,+,— (2.76)
and in particular
5Tz = —éw (0,2 — €2 M2 G?) (2.77)
— _ i Uy z'
SCyr = —gw (@Z — &My G > (2.78)
sty = —éw (9, A1) (2.79)
il
58y = _glww (0, W + iy My G) (2.80)
st = _f_Ww (OuW™H —igwMwG™) , (2.81)

giving typically the STI

0

. 0T Z7(2) Ap(@) Ay (y)|0) — Mz {0|T Gz(2) Au(2) Ay () 0) = 0, (2.82)

and a similar one for the Z’ gauge boson.
We pause for a moment to emphasize the difference between this STI and the corre-
sponding one in the SM. In this latter case the structure of the STI is

k, GP'" = (ky + k2) G PVH
1—x1
T T2cos Oy cos@ Zg Q2 " krakas [ mf/ dml/ dzs ]’ (2.83)

where GP"* is the gauge boson vertex, which is shown pictorially in figure 8 (diagrams
a and c¢). Notice that the goldstone contribution is the factor in square brackets in the
expression above, being the coupling of the Goldstone proportional to mff /Mz. In the
chiral limit the STI of the Z~y vertex of the Standard Model becomes an ordinary Ward
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a) b) c)

Figure 8: The general STI for the Z~+ vertex in our anomalous model away from the chiral limit.
The analogous STT for the SM case consists of only diagrams a) and c).

Tou Y
Z G
A
A — oM, - = 0
dz
v o Y
a) D)

Figure 9: The STI for the Zv~ vertex for our anomalous model and in the chiral phase. The
analogous STT in the SM consists of only diagram a).

identity, as in the photon case. In figure 8 the modification due to the presence of the WZ
term is evident. In fact expanding (2.82) in the anomalous case we have

kp GP = (ky + ko), GP*

_ﬁz fQ2 vpalBp. l_mZ/ldx /1_x1dw 1 (2.84)
_7120089ngA fxs lah28 |5 1, 10 NS

where the first term in the square brackets is now the WZ contribution and the second the
usual goldstone contribution, as in the SM case. Notice that the factor ) f gQQ? is in fact
proportional to the total chiral asymmetry of the Z vertex, which is mass independent and
appears as a factor in front of the WZ counterterm. In the chiral limit the anomalous STI
is represented in figure 9.

At this point we are ready to proceed with a more general analysis of the trilinear
gauge interactions and derive the expression of all the anomalous vertices of a given theory
in the mass eigenstate basis and away from the chiral limit. The reason for stressing this
aspect has to do with the way the chiral symmetry breaking effects appear in the SM and
in the anomalous models. In particular, we will start by extending the analysis presented
in [7] for the derivation of the Z~v7 vertex, which is here presented in far more detail.
Compared to [7] we show some unobvious features of the derivation which are essential in
order to formulate general rules for the computation of these vertices. We rotate the fields
from the interaction eigenstate basis to the physical basis and the CS counterterms are
partly absorbed and the anomaly is moved from the anomaly-free gauge boson vertices to
the anomalous ones. This analysis is then extended to other trilinear vertices and we finally
provide general rules to handle these types of interactions for a generic number of U(1)’s.

Before we come to the analysis of this vertex, we recall that the neutral current sector
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of the model is defined as [7]
—Lnc = Ef’}’“}-wfa (2.85)

with
F=g,WiT? + gy YA) +g5YpB, (2.86)

expressed in the interaction eigenstate basis. Equivalently it can be re-expressed as
f = gZQZZ + gZ/QZ/Z, + e QAFY, (287)
I I 0

where Q = T3 +Y. The physical fields A7, Z, Z' and W5, AY | B are related by the rotation
matrix O4 to the interaction eigenstates

A7 Ws
Z | =04 | AY (2.88)
z' B
or equivalently
W2 = Ofyr A% + Oty 2 Zy + Oty 21 Z), (2.89)
Al = O3 A+ 0y, Z, + Oy 5. Z), (2.90)
By = OpyZ,+Op, 7, (2.91)

Substituting these transformations in the expression of the bosonic operator F and reading
the coefficients of the fields Z,,, ZZL and A}, we obtain this set of relations for the coupling
constants and the generators in the two basis, given here in a chiral form

92Q% = T Oy, 7 + gy Y O 4 + g5YE 034 (2.92)
92Q% = gvYRO3, + gsYF 03y (2.93)
92Q% = gT* O, 1 + oy Y O3, + gYE 054 (2.94)
927Q% = gy Y03, + guY5 Oy (2.95)
eQY = goT30%, 4 + gy YFO} 4 = gy YROY 4 = eQF. (2.96)

3. General analysis of the Z~~ vertex

Let’s now come to a brief analysis of this vertex, stressing on the general features of its
derivation, which has not been detailed in [7]. In particular we highlight the general
approach to follow in order to derive these vertices and apply it to the case when several
anomalous U(1)’s are present. We will exploit the invariance of the anomalous part of the
effective action under transformations of the external classical fields. This is illustrated in
figure 7. More formally we can set

Wanom(BamAY) - Wanom(Za ZlaA'y) (31)

where we limit our analysis to the anomalous contributions.
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Figure 10: All the triangle diagrams and the possible CS, WZ and GS counterterms present in
the model (chiral phase). Not all these diagrams project on Z — ~~ in the mass eigenstate basis.

W, W, W,
B B B
+ =
W; W, W;
Figure 11: The routing of the anomaly and the absorption of the CS term into the anomalous B
gauge boson. The anomaly is distributed among the vertices with the black dot.

The triangle diagrams projecting on this vertex are the following: YYY, YW3Wj3,
BYY and BW3Ws3. They are represented in figure 10, where we have added the corre-
sponding counterterms.

The first two are SM-like and hence anomaly-free by charge assignment. The diagrams
involving the B gauge boson are typical of these models, are anomalous, and require suitable
counterterms in order to cancel their anomalies. All the possible counterterms are shown
in figure 10. The WZ terms of the form bY'Y or bW3W3 will project both on a Gzvv and
a x77y interactions, the first one being relevant for the STI of the vertex. The main issue
to be addressed is that of the distribution of the anomaly among the triangular vertices.
These points have been discussed in [6] and [7] working in the chiral limit, when the fermion
masses are removed from the diagrams.

The procedure can follow, equivalently, two directions: we can start from the BY W3
basis and project onto the vertices Zvyv, ZZ~..., rotating the fields (not the charges) or,
equivalently, start from the Z, Z’y basis and rotate the charges (but not the fields) and
the generators onto the interaction eigenstate basis BYW3. We obtain two equivalent
descriptions of the various vertices. In the interaction basis the CS terms are absorbed and
the anomaly is moved from the Y or W vertices into the B vertex, where it is cancelled
by the axion (see figure 11). This is the meaning of the STI’s shown above. Therefore it
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Figure 12: Chiral decomposition of the fermionic propagator after a mass insertion.

is clear that most of the CS terms do not appear explicitly if we use this approach. On
the other hand, if we work in the mass eigenstate basis they can be kept explicit, but one
has to be careful because in this case also the remaining vertices containing the generator
of the electric charge @ ~ Y + T3 have partial anomalies. The two approaches, as we are
going to see, can be combined in a very economical way for some vertices, for instance for
the Z~~ vertex, where one can attach all the anomaly to the Z gauge boson and add only
the Gz~ counterterm. Similarly, for other interactions such as the ZZ~ vertex, the total
anomaly has to be equally distributed between the two Z’s, since only the B generator
carries an anomaly in the chiral limit, if we absorb the CS terms. For other vertices such
as ZZ 7' etc, all the vertices contribute to the total anomaly and their partial contributions
can be identified by decomposing the corresponding triangle in the Y BW3 basis wih some
CS terms left over.

4. The (Z;yv) vertex

In this section we begin our technical discussion of the method. Since the most general
case is encountered when at least 3 anomalous U(1)’s are present in the theory, we will
consider for definiteness a model with three of them, say B; = {B1, B2, B3}. We can write
the field transformation from interaction eigenstates basis to the mass eigenstates basis as

3
W3 = O{/‘lfs“/A’Y + Z OII/L‘VSZzZl
=0

3
Y = O A+ 08,7
=0
3

B;j = 03 A+ > 032 %, (4.1)

=0
with 7 = 1,2,3 and where for [ = 0 we have the Zy belonging to the SM and Z, Z3, Z3 are
the anomalous ones. As in [7] we rotate the external field of the anomalous interactions
from one base to the other, selecting the projections over the Z;yy vertex (the ellipsis
indicate additional contributions that have no projection on the vertex that we consider)

ST @] YY) = ST [QF] REYY (Zi) +

3|
%Tr [Qy T3] (YWW) = %Tr [QvTE) Ry (Ziy) +
ST [Qs, @ BYY) = STr [Qu,QF) B (Zi) +
%Tr [Qp, T3] (ByWW) = %Tr [@p, T3] Ry (Ziyy) + .. (4.2)
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YYY pYWW pBYY pBWW
Ziy ’RZ}{W ’RZzw ’RZz'w
of the elements of the rotation matrix O“ are given by

where the rotation coefficients R containing several products

Ry =3[(0%yz(0M3,]

Ziyy
REWY = [2(0M)wyr (0)y 2, (01)ys + (0N, (0M)y 2]
Ry = [3(0M) 5,2, (0%,
RY:Y = [200M)y 2(0M)y+ (0w + (0w 2,013
RZ’XVY (OA)YV(OA)Blzl
R%XW (0N, (0N B, 2]
RZ}//‘{W [2 OA )8, OA)WSV(OA)Y“/] : (4.3)

It is important to note that in the chiral phase the YYY and YWW contributions vanish
because of the SM charge assignment. As we move to the m; # 0 phase we must include
(together with YYY and YW W) the other contributions listed below

—Tr Q%] (WWW) = ; r T3] RWWV"(ZW’W +

Ziyy
Tr [QBJQYT?)] (BiYW) =Tr [QBJQyTg} Zzw Y Zivy) +
%Tr Q3 T3] (YYW) = %Tr QY T3] Ry (Ziyy) + ... (4.4)

More details on the approach will be given below. For the moment we just mention
that the structure of the CS term can be computed by rotating the WZ counterterms into
the physical basis, having started with a symmetric distribution of the anomaly in all the
triangle diagrams. The CS terms in this case take the form

an v B;YY ,B;YY B;WW LB;WW y
Vos= T2 Mva (k) k) ZZ[QB G0 Ry am,g307 " R | Zhavar,
(4.5)

and they are rotated into the physical basis together with the anomalous interactions [7].
We have defined the following chiral asymmetries

?YY - QB f(Q ) QBJ,f(QYf)
9}3 = QBj,f( g,f)z’ (4.6)

We can show that the equations of the vertex in the momentum space can be obtained
following a procedure similar respect to the case of a single U(1) [7], that we are now going
to generalize. In particular we will try to absorb all the CS terms that we can, getting
as close as possible to the SM result. This is in general possible for diagrams that have
specific Bose symmetries or conserved electromagnetic currents, but some of the details of
this construction are quite subtle especially as we move away from the chiral limit.
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Figure 13: Chiral triangles contribution to the YYY vertex. The same decomposition holds for
the B;YY case.

4.1 Decomposition in the interaction basis and in the mass eigenstates basis of
the Z;yv vertex

As we have mentioned, the anomalous effective action, composed of the triangle diagrams
plus its CS counterterms can be expressed either in the base of the mass eigenstates or in
that of the interaction eigenstates.

We start by keeping all the pieces of the 1-loop effective action in the interaction basis
in the my # 0 phase and rotate the external (classical) fields on the physical basis taking
all the contribution to the (Z;yy) vertex. A given vertex is first decomposed into its chiral
contributions and then rotated into the physical gauge boson eigenstates. For instance,
let’s start with the non anomalous YYY vertex see figures 12 and 13. Actually, in this
specific case the sums over each fermion generation are actually zero in the chiral limit, but
we will impose this condition at the end and prefer to follow the general treatment as for
other (anomalous) vertices. We write this vertex in terms of chiral projectors (L/R), where
L/R =17 75, and the diagrams contain a massive fermion of mass my. The structure of
the vertex is

d*q Tr((g+mp)VPLlg+F +mp)y” Pog+kf +myp)y" PL]

(LLL) 0=
) ey (a2 = m3) [(a+ ) = m3] [(q + )2 =}

The vertices of the form LLR, RRL, and so on, are obtained from the expression above just

+exch.. (4.7)

by substituting the corresponding chiral projectors. Notice that for loops of fixed chirality
we have no mass contributions from the trace in the numerator and we easily derive the
identity
(LLL) |y 20 = —(RER)|m, 0 (4.8)
At this point we start decomposing each diagram in the interaction basis
VYY) G TriQY] = Y |g3(@QF )HLLIM + g} (QF ) (RRR)™

f
+35 QY 1(QF )2 (LRRM + g3 Q¥ ;QF jQ¥ [(LRLY™

+ov (QF £)?QF f(LLRY™ + g3-Q% ;(Qy ;)*(RLL)M
+ovQF QY jQF f(RLRYM™ + g3-(QF ;)* Q¥ f(RRL)M

1
XL ABATRY T + (4.9)
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Figure 14: Chiral triangles contribution to the YW W vertex. The same decomposition holds for
the B;WW case.

where the factor of 1/8 comes from the chiral projectors and the dots indicate all the other
contributions of the type Z2;2,,7v, ZiZnZ, and so on, which do not contribute to the Z;yy
vertex. This projection contains chirality conserving and chirality flipping terms. The
two combinations which are chirally conserving are LLL and RRR while the remaining
ones need to have 2 chirality flips to be nonzero (ex. LLR or RRL) and are therefore
proportional to mfe

We repeat this procedure for all the other vertices in the interaction eigenstate basis
that project on the vertex in which we are interested. For instance, in the case of the
(YWW) vertex the structure is simpler because the generator associated to Ws is left-

chiral (see figure 14)
(YWW) gy 3 TriQy(T*) = |y 63Q%: (T} ) LLL)M™
!
v 1 v
gy 53QF (T3 ) (RLLYM™ | <2} AL AL RYYY +..(4.10)
Similarly, all the pieces B;YY and B;WW for i = 1,2, 3, give the projections

(B;YY)gpgyTr [QBiQ%/]:Z [gBig%/Qgi,f(Qf//,f)2<LLL>)\MV+gBig%/Q§i,f(Qg,f)2<RRR>)\MV
f

+gBig§2/Q§i,f(Q$,f)2(LRR>)‘W + gBig%Qéi,fQﬁfQ{?,f<LRL>/\W
+gBig}2/Qéi,fQ€/,fQ}}E,f<LLR>MW + gBig%Q}@,f(QiLf,f)2<RLL>AHV

om gt QF QF QF (RLRY™ 1 ng.g%@gi,f@ﬁf@af<RRw]
1 .
X ngAAﬁjA,YRBZYY +... (4.11)
and

(BWW) gy g3 Tr(Qs,(T°)?) = 3 |95,03Q%, £ (T3 ) (LLL)™™
f
vV 1 14
+98,03Q% (T3 ;)P (RLLY™ ] SA ARG
(4.12)

We obtain similar expressions for the terms WW W, YYW, B;YW, etc. which appear in
the my # 0 phase.
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4.1.1 The m; = 0 phase

To proceed with the analysis of the amplitude we start from the chirally symmetric phase
(mg = 0). The terms of mixed chirality (such as (LRR) and so on) vanish in this limit,
leaving only the chiral preserving interactions LLL and RRR. In this limit we can formally
impose the relation

(LLLY™"(ms = 0) = —4A 444(0) (4.13)

that will be used extensively in all the work. This relation or other similar relations are
just the starting point of the entire construction. The final expressions of the anomalous
vertices are obtained using the generalized Ward identities of the theory. What really
defines the theories are the distribution of the partial anomalies. We will attach an equal
anomaly on each axial-vector vertex in diagrams of the form AAA and we will compensate
this equal distribution with additional CS interactions - so to bring these diagrams to the
desired form AVV or VAV or VV A - whenever a non anomalous U(1) appears at a given
vertex. For models where a single anomalous U(1) is present this does not bring in any
ambiguity. For instance, conservation of the Y current in B;Y'Y will allow us to move the
anomaly from the Y’s to the B; vertices and this is implicitly done using a CS term. We
say that this procedure is allowing us to absorb a CS interaction. Moving to the YYY
vertex, this vanishes identically in the chiral limit since we factorize left- and right-handed
modes for each generation by an anomaly-free charge assignment

(YYY)gy TrlQy] = 0, (4.14)
(YWW)gy g3 TrlQy (T3)%] = 0. (4.15)

At this point we pause to show how the re-distribution of the anomaly goes in the case at
hand. We have the contribution

Vgsifyy = d2<BZY VAN Fy> (4.16)

and where the BRST conditions in the Stiickelberg phase give

, 2 1
d; = _ZgBig)zfganDBiYYQ Dp,yy = gTT[QBiQ%]- (4.17)
Also these terms are projected on the vertex to give

VEY = di(BY A Fy)=(—i)die™* (k1o — k2a) [(01)3,(0%),2,] ZPMARAY + ...
VEEW = (e B i Cotetiomy = (i) e;e™® (k1o — ko) [(0*) 3y (0 B2 ) Z) ARAY + ..
(4.18)
In general, a vertex such as B;YY is changed into an AVV, while vertices of the form

Y BB and Y B;B; which appear in the computation of the vZZ vZ;Z,, interactions are
changed into VAV + VVA. This procedure is summarized by the equations

v an Vo v
AN a(my = 0,k kz) — §€A“ (kra = k2a) = AWy (my = 0, k1 ko)
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v an DX % v
Affu{\A(mf =0,ky, —k) — ?5“ A (ko + 2koa) = Affu;\v(mf =0, ko, —k)
=AY (my = 0,ky, ko)
AV — 0, —k k) — L _gp oy = AV — 0.~k k
Aaa(my =0,—k, ki) 3¢ (=2k10 = k20) = Ajyy (my =0, =k, k1)

= A?}{;A(mf =0,k1,k2)

an

AXXa(my = 0.k1 ko) + Z M (o — hoa) =

1 vV vV
5 [(A%V(mf = 0, k1, k) + AN (my = 0, ky, /@)] ,(4.19)

where the last relation can be proved in a simple way by summing the second and the
third contributions. Defining k:g),‘ = —k*, one can combine together the AAA plus the
counterterms into a unique expression for each case

A A U2 e
VY = 4Dpyy 95,9y AXaa k1, k2) + Dp,yy 93191%; 3¢ M (ky — k),

A A i 2
V%&-Y = 4DBZ-YY gBig)% AZVAA(]% k3) + DBl-YY gBig}%P 3 EW/\U(]% —k3),
2
g EMW(IC?, —k1)o

A A
V)V/#Bi = 4DBZ~YY 93293 AZKA(k‘& k1) + DBiYY 931913? 3

A A Z 1 A
VY%;BJ- = 4DYBl-Bj 9y 9B;9B; AAuAVA(klv ko) — DYBiBj 9v9B;9B; —5 5 € M7 (ky — ko)

23
(4.20)
where we have rotated them onto the Z;yv vertex. For the non abelian case (W B;W and

WW B;), the calculation is similar, so we omit the details.
Finally the anomalous contributions plus the CS interactions are given by

(BY'Y)my=0 + (BiWW) =0 =

1 Apv 4 v
+om9% X [QF, 1(QV) = Q5,4 (Q5 )] GANL(ORZT 2P AL A
f

1 B;WW
o} 30 Q6,12 )" A aan0 ¥ REY 7 a1
f

B;YY

4 I )
Zivy -I-gBlg%ganD](BZ)RBZWW 6)\MV(X (kl,a o k2,a) Zl)\AgAx

. 4
—1 [gBig%ganDBiYYR Zivy

(4.21)

which allows to move the anomaly on the axial current and we simply get
Lo B;YY
(Zlmg=0 = D _gm.9% Y (@, (@7, — QB £(QF %] 5 AW () RZL) 2 AL AL
( f
LA B,WW
+ 98,93 Yy QB (17,1 5 AN (O R 2 AL AL (4.22)
i f

where we transfer all the anomaly on the vertex labelled by the A index, obtaining that
the Ward identities on the photons are satisfied.
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At this point, it is convenient to introduce the chiral asymmetry
oY BiB;

= @QF@E,)(@F, ) — (QF)QE )@E, )] (4.23)

and express the coefficients in front of the CS counterterms as follows

1 .
Dpyy = ~3 ZH?YY
f
1 .
D = —5 308"

1 Y B;B;
Dyp,p, = —EZQf 7. (4.24)

After some manipulations we obtain the expression of the (Z;yy) vertex in the my =0
phase which is given by

A B;YY pB;YY BWW pBiWW
<Zl’Y’Y>‘mf=0 = - AA'L{I/I'j\/' Zl AMAV ZZ [nggYQ RZI'Y'Y + 932926 RZl'y'y ] )

(4.25)

where for A4y (0) we write

. 1 [t 1-z 1
AAVV(O) # (kl,kg,()) = ﬁ/g dx/o dym
{elk1, \, p, V] [y(y — 1)k3 — zyk; - k:g]
+elko, A, 1, V] [2(1 — 2)KF + 2yky - ko
+elk, ko, \, V] [z(z — 1)k} — zykh]
+elky, ko, A, p] [zyki + (1 — y)yks]}
A(0) = z(z — DK + y(y — k3 — 2ayky - ko. (4.26)
At this stage we should keep in mind that if all the external particles are on-shell,
the total amplitude vanishes because of the Landau-Yang theorem. In other words the
Z’s can’t decay on shell into two on-shell photons. However it is possible to have two
on-shell photons if in the initial state is characterized by an anomalous process as well,

such as gluon fusion. This does not contradict the Landau-Yang theorem since the Z-pole
disappears [20] in the presence of an anomalous Z’ exchange [20].

4.2 The my # 0 phase

Now we move to the analysis of the vertices away from the chiral limit. Also in this case
we separate the mass-dependent from the mass-dependent contributions.

4.2.1 Chirality preserving vertices

We start analyzing the vertices away from the chiral limit by separating the chiral preserv-
ing contributions from the remaining ones. The general expression of LLL is given by

<LLL>|mf7éO = A1€[k'1, A) H, V] + A25[k727 A) 22 V] + A3k{€[kj17 k27 >\7 M] + A4k75€[k17 k27 A) ,U]
+A5k?€[k1, ka, A, V] + Aﬁkgﬁ[kl, ko, A, I/] (4.27)
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where we have removed, for simplicity, the dependence on the charges and the coupling
constants.
The divergent pieces A; and As are given by
Ay = 8i [Tso(k1, k) — Tao(kn, k)] kT + 163 [Ty1 (K1, ko) — To1 (ka, ko)) k1 - ke
+8i [Zo1 (k1 k2) — Toa(ky, ka) + Taa(ky, ko)) k3

+44 [3D10(k‘1, ]{72) — 2D00(k‘1, ]{72)] (4.28)
where
Syt
Toilk, o) /dw/ / cat i
r(1—z)k? y(l—y)kz%—2xyk:1-k:2+mﬂ
q2xsyt
Dst(k1, k2) /dx/ / 5 (4.29)
r(1—z)k?— (1—y)k§—2zﬂyk1'k‘2—|—mﬂ

and one can verify that A (ki ka) = —Ag(kg, k1). All the mass dependence is contained
only in the denominators of the propagators appearing in the Feynman parametrization.
The finite pieces As ... Ag are the following
Ag(k’l, k‘ ) = —162111(]431,]{72) = —Aﬁ(k‘Q,kil)
A4(l€1, kg) = 161 [Iog(kl, kg) —To1 (k}l, kg)] = —A5(l€2, kl) (430)
where still we need to perform the trivial finite integrals over the momentum gq.
The decomposition of (LLL); into massless and massive components gives
(LLL); = (LLL(m; # 0)) = (LLL)(0)
(LLL)(0) = (LLL(my = 0))

(LLL(my # 0)) = (LLL) s + (LLL)(0), (4.31)
where we have isolated the massless contributions. As we have seen before, the CS terms
acts only on the massless part of the triangle (having used eq. (4.13)) and reproduce the
massless contribution calculated in eq. (4.25). Since the mass terms are proportional to
the tensors e[k, A, i, v] and e[k, A, u, V] they can be included in the singular structures A;
and Az of (LLL)|m 0

Ay = Ay +im3F(QF )7 (Qy ) [-8T00(q, k. ko) + 24T10(q°, kr, ko)
+im3 Q¥ ;)*(Q% ;) [8Zoo(q®, k1, k2) — 24T10(q%, k1, k2))
—Sim?Qﬁf(T?ffFIlo(qz, kl, kz)

—im5 Z QF, QY Q% [8T10(¢% k1, ka) + 4To0(¢% k1, k2)]

+im? Z Qp, ;QF QY s [8T10(¢% k1, ka) + 4Zo0(¢%, k1, k2)]
—8im$ Y QR (QF )?Tio(q® k1, k2) + 8im3 > Qp, (QF )*Tro(q% k1, k2)

—8im} Z QB 1(T3 ) *Tro(q°, k1, k2). (4.32)
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At this point we have to consider also the chirality flipping terms. For simplicity we
discuss only the case of the YYY vertex, the others being similar.

4.2.2 Chirality flipping vertices

These contributions are extracted rather straighforwardly and contribute to the total vertex
amplitude with mass corrections that modify A; and As. We discuss this point first for
the (YYY), and then quote the result for the entire contribution to Z~-~.

For YYY we obtain

(@3 4)*(Q¥.) (RRL) + (LRR) + (RLR)] =

(QF )2 (QF4) [8imFToo (k1. k2) (elka, A, 1, v] — elkr, A, p,v))
—|—24im?c (Zlo(kl, kg)&‘[kl, )\, M, V] - Iol(kl, kg)&‘[kz, )\, My I/])] s (433)

and the analysis can be extended to the other trilinear contributions and can be simplified
using the relations

[(RRL) + (LRR) + (RLR)] = — [(LLR) + (RLL) 4+ (LRL)]. (4.34)
The final result is given by

mass terms = im}gy-(Qy 1) (Qy:5) [8Zoo (k1. k2) (lka, A, 11, V] — elkn, A, 1, v])
+24 (Zyo(k1, k2)elki, A, p, v] — Zo1 (K1, k2)elka, A, p, v])]
—im3g5(QF 1)*(Qy ;) [8Zoo (k1. k2) (elka, A, 1, v] — e[k, A, p, 1))
+24 (Zyo(k1, k2)elki, A, p, v] — Zo1 (K1, k2)elka, A, 1, v])]
—I—SimfcgyggQQf(Tgff)z (Zo1(k1, k2)elka, A,y v] — Tyo(ka, k2)elka, A, p, v])
+im} ZgBigxzfQéi,fQﬁnyL/,f [(8Z01(a%, kv, k2) — 4Zoo (K1, k2))e[ka, A, 1, V]

+(8Z10(k1, ko) + 4Zoo (K1, k2))e[k1, A, p, V]]
—im} > _ 98,9y QB fQV, 1 Q% 1 [(8T01 (K1, k2) — 400 (K1, k2))elka, A, 1, v]

+(8Z10(k1, k2) + 4Zoo (K1, k2))elk1, A, p, V]
+im3 > 9,9y QE, 1(QY. ;)78 (Tor(ky, ko)elka, A, 1, v] — Tao(ky, ka)elkr, A, p, V)

—im3 > 98,9y QB (QF )*8 (Zor (k1 ka)elka, A, 1, v] — Tao(kn, k)e[kr, A, 1, v])
+8im7 ZgBiggQgi,f(Tyff)2 (Zo1(k1, k2)e(ka, A, p, v] — Tao(k, ka)elkr, A, p, v])
(4.35)

and is finite. To conclude our derivation in this special case, we can summarize our findings
as follows.

In a triangle diagram of the form, say, AVV, if we impose a vector Ward identity on
the two V lines we redefine the divergent invariant amplitudes A; and Ay (Ay = —A;)
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in terms of the remaining amplitudes As, ..., Ag, which are convergent. The chirality flip
contributions such as LLR turn out to be finite, but are proportional to A; and As, and
disappear once we impose the WI’s on the V lines. This observation clarifies why in the
Z~~ vertex of the SM the mass dependence of the numerators disappears and the traces
can be computed as in the chiral limit. Including the mass dependent contributions we
obtain (see figure 15 for the m; # 0 phase)

1

2 <LLL>>;W {g%/e}/YYRYYY + g%HJYVWWRWWW

(Zy V) msz0 = (Z1vV)mp=0 — Z Zivy Zivy
f

BYW LB,YW
+39v0; Ry + 90007V R + ) 9mgagv 07 Ry
i

BiYY pB;YY BWW pBWW (A
+ZgBig%0f Ryjy + ZgBig%ef Rz }Zl ALAY
i i

+mfc (chirally flipped terms) (4.36)

where <LLL>;“ “is now defined by eq. (4.31). In Eq.(4.36) we have also defined the following
chiral asymmetries

oYW = (13 )
07" = [(Qy,)°TL ]
Y _ [Qrich | )
It is important to note that eq. (4.36) is still expressed as in Rosenberg (see [22], [6]), with
the usual the finite cubic terms in the momenta ki and ko and the two singular pieces and

the mass contributions. At this stage, to get the physical amplitude, we must impose e.m.
current conservation on the external photons

A
R Zoy )0 = O

A
k5 (27 im0 = 0 (4.38)
Using these conditions, again we can re-express the coefficient A1, Ay in terms of As, ..., Ag

and we drop the explicit mass dependence in the numerators of the expression of the
physical amplitude.

Thus, applying the Ward identities on the triangle (LLL), it reduces to the combi-
nation A vy (mys) — Aayy(0) which must be added to the first term in the curly brackets
of eq. (4.36) thereby giving our final result for the physical amplitude

1 _ _
(2o = 3 20 AA S [G0) Y REEY + WV RYIW + gy iy R

Z1yy Zivy
f
B;YW pB;YW
+9v 9207 Ry +ZgBigY926f Rl
i

2 nB.YY pB;YY 20BiWW pB;WW A
+ZgBigY9f Ry, + 9B¢929f Ryl Ayy (mg #0).
)

(4.39)
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We have defined

REX/}; = (OA)YZZ(OA)%/W’ R?ﬁxw (OA)WSZl(OA)Wgw (4'40)

and the triangle A vy (my # 0) is given by

1-z
)\,uu —
Bavvtmy £ 0k kv = % [ [l

{ [k, A, ] [y(y — 1)k3 — ayky - ko]
+elka, Ay, V) [2(1 — 2)KF + 2yky - ko)
telk, ko, \,v] [z(x — 1)K — zykh]
+elky, ko, A gl [xyky + (1 — y)yks]}
A(my) = m? +z(z— Dk +y(y — Dk3 — 2zyky - ky.  (4.41)
4.2.3 The SM limit

It is straightforward to obtain the corresponding expression in the SM from the previous
result. As usual we obtain, beside the tensor structures of the Rosenberg expansion, all the
chirally flipped terms which are proportional to a mass term times a tensor k“fizz—:[oz, A, 1, V).
As we have seen before in the previous sections all these terms can be re-absorbed once we
impose the conservation of the electromagnetic current.

Then, setting the anomalous pieces to zero by taking gp, — 0, we are left with the
usual Z boson (Z; — Z), and we have

1 v y
(277 0 = —gze2§j Q77(@QF? - Q27 Q] 5% (my # 002 A5,
Zyy

A _
- _ Z AA!{/I'/V my 7& 0) {gi’)/o}/YYRYYY + g%gye}/WWRYWW

_’_gge}/VWWRWWW + 9%929}/YWRYYW} ZAAQLA,I;,

Zy Zyy
(4.42)
where the coefficients R?{C{Y, R%‘;VW are defined in the previous section. It is not difficult
to recognize that in the first line we have
R, A
(Z9V) im0 = —gz€*5 Z(Qf) [ — QB! } AN (my £ 0)ZMAR AL (4.43)
f
and since
L,f Rf| _ o 2
[ z' — Wz ] = 2945
g2
~ 4.44
9z cos Oy ( )

finally we obtain

g v
(Zy) g0 = ————e2 > (Qp)295 [ AN (my # 0) 22 ALAY, (4.45)
7

cos HW

which is exactly the SM vertex [21].
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Figure 15: Interaction basis contribution to the Zv~ vertex. In the SM only the first two diagrams

survive. The CS terms, in this case, are absorbed so that only the B vertex is anomalous. In the
chiral limit in the SM the first two diagrams vanish.

v
L R R L
z
_ L + L + LQL + L<
L R L R
v R L L R
+ R + R + RQL + R<
R L R L

Figure 16: Chiral triangles contribution to the Z~~ vertex.

5. The vZZ vertex

Before coming to analyze the most general cases involving two or three anomalous Z's, it
is more convenient to start with the vZZ interaction with two identical Z’s in the final
state and use the result in this simpler case for the general analysis.

5.1 The vertex in the chiral limit

We proceed in the same manner as before. In the m; = 0 phase, the terms in the interaction
eigenstates basis we need to consider are

gTT [QvTE] (YWW) =
—TT [QYQB] (YBB>
—Tr [QBQY] (BYY) =

gTr (QET3] (BWW) =

—Tr Q] (YYY) = —Tr Q3] [3(0¢)208.] (v22Z) +
Tr [Qy T3] [204 204, 0% 2 + (Ofy 2)° 0%, ] (12Z) +
Tr [QvQ3] [0¢,(052)*] (7Z2) +
Tr[QpQY] [205,0¢,0¢.] (v22) +
—Tr [QBT3] [205,0i 20 ] (WZZ) + (5.1)

We define for future reference the following expressions for the rotation matrix

Ry = [3(0¢,)°0¢,]
R";VZ@/W = [ (O%3Z)2Oé/3’y]

R«%}%Y = [20 ZOYWOYZ + (OW;W)(OYZ) }
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RXZV[%W = [2OW3ZOW3-yOYZ + (OW3Z) OY-y]

ngzy = [ZOBZOYZOYV}

RYZY = [0¢,(082)°]

ngzw = [Owﬂ OBZ ]

REYW = [204,04, 0%,

RO} = [OBZOW;),ZOM*‘OBZOWWOYZ] (5.2)

The chiral decomposition proceeds similarly to the case of Zyv (see figure 16). Also in this
situation the tensor (LLL>?” ” is characterized by the two independent momenta k; ,, and
ks, of the two outgoing Z's. Since the LLL triangle is still ill-defined, we must distribute
the anomaly in a certain way. This is driven by the symmetry of the theory, and in this
case the STI’s play a crucial role even in the m; = 0 unbroken chiral phase of the theory.
In order to define the (LLL)*¥|,, ;=0 diagram we choose a symmetric assignment of the
anomaly

an
k1,p(LLL>)‘W|mf=0 = 35%1,]{727/\, V]

Qn
k‘2,u<LLL>/\W|mf:0 = —35[%,]{727/\,#]

Qn
Fex(LLLYM |,y =g = ?z—:[kl,kg,,u, v]. (5.3)

These conditions together with the Bose symmetry on the two Z’s
(LLLY" | . —o(k, k1, k) = (LLLY"|n ;o (k, k2, k1) (5.4)

allow us to remove the singular coefficients proportional to the two linear tensor structures
of the amplitude. The complete tensor structure of the vZZ vertex in this case can be
written in terms of the usual invariant amplitudes Ay, ... Ag

As = —16 (Tio(k1, ko) — Too (K1, ko))
Ay = +16T1; (k1. k»)
As = —16T11 (k1, k»)
Ag = —16 (Zo1 (k1. ko) — Toa (1, k2))

Ay = k1 - kods — B3 As +
Ao = —ky - koAy — K2 A3 — %" (5.5)
We have the constraints
Apv an Qn
k)\<LLL> i ‘mf:() = ?E [kl,kg,,u,v] = A — Ay = ? (56)

and eq. (4.13). In this case the CS terms coming from the lagrangian in the interaction
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eigenstates basis are defined as follows
Ap, VA an I/ fe}
VCS—Z{ 9B gyg 0y YRV 3 "2 (kg0 —ks,0) — ngy89YYBR}gZB 3 A (kg 0 —ki1a)

a 1 a
+9v 9B gef BBR??»? Enfwya(kl,a —k2,0) — 9895 gHJWBWR%VZByW?nEWM(kZa —k3,a)

1 an, e
_ngggef WBRWWB 3 Ap (k?)a _ kl a)} . (57)

Then, collecting all the terms, the expression in the m = 0 phase for the vZZ process
can be written as

1 v VA an e
(V22 0 = —545212° Y {gngb 0y P BYEY | AR(0) = S (hpa — ko)
f

v an v e}
—I-QBQYGYYBR}Y/%/ZB [AA)XA(O) - ?5 A (k‘&a - kl,a)}
v an 1 76%
v g0y PP RGP [ANA1(0) + 52N (o — )|
v an VO
gpg0lY PV RYEY [A(0) - e (0 — k)]

14 an VAU
+9B 929}/VWBR?/ZV5B [AAXLA(O) - gﬁ Au (k?),a - kl,a)]} ) (5.8)

and after some manipulations, we obtain

1

<fYZZ>‘mf:0 =75

3 (A0 0)+ A0 22 gnsh o R

230}'/BBRYBB QHBWWRBWW} (59)

t9v9g + 9BY

where we have used

07 PP = Qy 1 (QB.5) — QY f(QF f)?
_ 1
REZY = 5R$§} . (5.10)
If we define
v Ay Ay
TV (0) = [AYF (0) + A, (0)] (5.11)

we can write an explicit expression for T which is given by

1 1 1-z 1
Ay _ aluv _ 2 _ 2
TH(0) = 7T2/0 dx/o dy—A(O) {a ko [(1—2)zki +y(y — 1)k3]

+E°‘>‘“”k‘2,a [(1 — a:)mk% +y(y — 1)k§]
+elki, ko, A, v] [2(z — V)xky ) — 22yko ;)]
+elk, ko, A\, 1] [2(1 — y)yka + 22yki ]}, (5.12)
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and it is straightforward to observe that the electromagnetic current conservation is satisfied
on the photon line

1

ky T = 53¢ kKo, A, V]
1
k2,l/T>\uV - _ﬁe [kla k27 >\7 lu’]
(k1 + ko )TM = 0. (5.13)

5.2 vZZ: The my # 0 phase

In the ms # 0 phase we must add to the previous chirally conserved contributions all the
chirally flipped interactions of the type (LLR) and similar, which are proportional to m?c.
As we have already seen in the Z~~ case, all the mass terms have a tensor structure of
the type m?&“a’)\"u’yklga and we can always define the coefficients A; and A, so that they
include all the mass terms. Again, they are expressed in terms of the finite quantities
As, ..., Ag by imposing the physical restriction, i.e. the em. current conservation on the
photon line, and the anomalous Ward identities on the two Z’s lines. Since the CS inter-
actions act only on the massless part of the triangles, they are absorbed by splitting the
tensor (LLL)™ as

(LLLYM|p = (LLLYM | =g + (LLLYM (my);
(LLLY (myg) = (LLLY™"|p 20 — (LLLYM" |, —0.
(5.14)

Then, the structure of the amplitude will be

1

E(’VZZHmf#O = fllz—:[krl, A v+ Age[k’g, A v+ A3k‘lf€[k‘1, ko, A\, V]

—|—A4k75€[k‘1, ko, A, I/] + A5k‘f€[k‘1, ko, A, ,u] + Aﬁkgg[kfl, ko, A, l/] (5.15)
and using the explicit expressions of the coeficients we obtain

02Dl z0 = = 3 [0 RS + gl W R
!

WW pYWW | 2 2YYW pYYW
Riz7" +9vgel;" " Rizz

YY pBYY 2 WYBB pY BB
RYz7 +9vgpty "Ry

BB pWBB 20BWW pBWW
R 777 + 989505 R 77

+ov 930}
+apgy0F
+959207

1 v 14
—|—g%gggy0?YWR$§/ZW] §T)‘“ (my #0)A, 212", (5.16)
where we have defined
v Apv Apv
TV (my #0) = | AV (my #0) + A4 (my £ 0)]
0~ (@1

_ 1
RYEP = CREP, (5.17)
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T (my #0) = / dm/ dyA {z—:a}‘“"k‘La (1 — 2)zki — y(1 — y)k3)

+s°“"”kz,a (1= z)aki — y(1 — y)k3]
+elki, k2, A, v] [2(z — 1)aky , — 22yks ]
+elki, ko, A p] [2(1 — y)yka, + 2xyks ]} .(5.18)

We can immediately see that the expected broken Ward identities

ky T = i5[k‘1 ko, A\, V] 1—7712/1dm/1_gcd@/ 1
* w2 T 2 " Jo 0 A(my)

[ ] { 1 9 1 11—z 1

elkl, ko, \,v]< = —m / dm/ dy }

b 2 T Jo 0 my)

(k1 + k2 )T =0 (5.19)

k2,uT)\'uy

are indeed satisfied.

6. Trilinear interactions in multiple U(1) models

Building on the computation of the Z~+ and yZZ presented in the sections above, we
formulate here some general prescriptions that can be used in the analysis of anomalous
abelian models when several U(1)’s are present and which help to simplify the process of
building the structure of the anomalous vertices in the basis of the mass eigenstates. The
general case is already encountered when the anomalous gauge structure contains three
anomalous U(1)’s beside the usual gauge groups of the SM. We prefer to work with this
specific choice in order to simplify the formalism, though the discussion and the results are
valid in general.

We denote respectively with W3, Ay, By, W3W3 the weak, the hypercharge gauge boson
and their 3 anomalous partners. At this point we consider the anomalous triangle diagrams
of the model and observe that we can either

1. distribute the anomally equally among all the corresponding generators
(15,Y,Yp,,Yn,,Yp,) and compensate for the violation of the Ward identity on the
non anomalous vertices with suitable CS interactions

or

2. re-define the trilinear vertices ab initio so that some partial anomalies are removed
from the Y — W3 generators in the diagrams containing mixed anomalies. Also in
this case some CS counterterms may remain.

We recall that the anomaly-free generators are not accompanied by axions. The dif-
ference between the first and the second method is in the treatment of the CS terms: in
the first case they all appear explicitly as separate contributions, while in the second one
they can be absorbed, at least in part, into the definition of the vertices. In one case or
the other the final result is the same. In particular one has to be careful on how to handle
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the distribution of the partial anomalies (in the physical basis) especially when a certain
vertex does not have any Bose symmetry, such as for three different gauge bosons, and
this is not constrained by specific relations. In this section we will go back again to the
examples that we have discussed in detail above and illustrate how to proceed in the most
general case.

Consider the Zvv case in the chiral limit. For instance, a vertex of the form ByY'Y
will be projected into the Z~v vertex with a combination of rotation matrices of the form
R??gy, generating a partial contribution which is typically of the form (LLL}R??%/Y. At
this point, in the B2Y'Y diagram, which is interpreted as a (LLL) ~ A g4 contribution,
we move the anomaly on the Bs-vertex by absorbing one CS term, thereby changing the
(LLL) vertex into an AVV vertex.

We do the same for all the trilinear contributions such as B3Y'Y, B1 By B3 and so on,
similarly to what we have discussed in the previous sections. For instance B3Y'Y, which is
also proportional to an AAA diagram, is turned into an AVV diagram by a suitable CS
term. The Z~~ is identified by adding up all the projections. This is the second approach.

The alternative procedure, which is the basic content of the first prescription mentioned
above, consists in keeping the BoY'Y vertex as an AAA vertex, while the CS counterterm,
which is needed to remove the anomaly from the Y vertex, has to be kept separate. Also
in this case the contribution of BoYY to Zvv is of the form (LLL>R§,2§Y, with (LLL) ~
A a4, and the CS terms that accompanies this contribution is also rotated into the same
Z~y vertex.

Using the second approach in the final construction of the Z~v vertex we add up all
the projections and obtain as a result a single AVV diagram, as one would have naively
expected using QED Ward identities on the photons lines. Instead, following the first we
are forced to describe the same vertex as a sum of two contributions: a fermionic triangle
(which has partial anomalies on the two photon lines) plus the CS counterterms, the sum
of which is again of the form AVV.

However, when possible, it is convenient to use a single diagram to describe a certain
interaction, especially if the vertex has specific Bose symmetries, as in the case of the Z~~y
vertex.

For instance, we could have easily inferred the result in the Z~~ case with no difficulty
at all, since the partial anomaly on the photon lines is zero and the total anomaly, which
is a constant, has to be necessarily attached to the Z line and not to the photon. A similar
result holds for the ZZZ vertex where the anomaly has to be assigned symmetrically.
Notice that, in prescription 2) when several extra U(1)’s are present, the vertices in the
interaction eigenstate basis such as By By Bs or B1 BBy should be kept in their AAA form,
since the presence of axions (b1, be, b3) is sufficient to guarantee the gauge invariance of each
anomalous gauge boson line.

A final example concerns the case when 3 different anomalous gauge bosons are present,
for instance ZZ'Z"”. In this case the distribution of the partial anomalies can be easily
inferred by combining all the projections of the trilinear vertices B1Y'Y, Bi{W W, By By Bs,
B1ByBs, BoB3Bs. .. ete. into ZZ'Z". The absorption of the CS terms here is also straight-
forward, since vertices such as B1YY, Y B1Y and YY B are rewritten as AVV, VAV and
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VVA contributions respectively. On the other hand, terms such as By BBy or B; By Bg are
kept in their AAA form with an equal share of partial anomalies. Notice that in this case
the final vertex, also in the second approach where the CS terms are partially absorbed,
does not result in a single diagram as in the Zvvy case, but in a combination of several
contributions.

6.1 Moving away from the chiral limit with several anomalous U(1)’s

Chiral symmetry breaking, as we have seen in the examples discussed before, introduces a
higher level of complications in the analysis of these vertices. Also in this case we try to find
a prescription to fix the trilinear anomalous gauge interactions away from the chiral limit.
As we have seen from the treatment of the previous sections, the presence of mass terms in
any triangle graph is confined to denominator of their Feynman parameterization, once the
Ward identities are imposed on each vertex. This implies that all the mixed terms of the
form LLR or RRL containing quadratic mass insertions can be omitted in any diagram
and the final result for any anomalous contributions such as B1BoBs or B1Y'Y involves
only an (LLL) fermionic triangle where the mass from the Dirac traces is removed.

For instance, let’s consider again the derivation of the yZZ vertex in this case. We
project the trilinear gauge interactions of the effective action written in the eigenstate basis
into the yZZ vertex (see figure 17) as before and, typically, we encounter vertices such as
B1B3By or B1YY (and so on) that need to be rotated. We remove the masses from the
numerator of these vertices and reduce each of them to a standard (LLL) form, having
omitted the mixing terms LLR, RRL, etc. Also in this case a vertex such as B1YY is
turned into an AV'V by absorbing a corresponding CS interaction, while its broken Ward
identities will be of the form

k‘lpﬁ)"w(ﬁ, ki,k2) =0
ko AN (B, k1, k) = 0
ExAMY (B, Ky, ko) = an(B)e™PhSkS + 2m AP (6.1)

with a broken WI on the A line and exact ones on the remaining V lines corresponding to
the two Y generators. Similarly, when we consider the projection of a term such as B1 By B3
into ZZ'Z" vertex, we impose a symmetric distribution of the anomaly and broken WTI’s
on the three external lines

ke A (ey k) = %"emﬁk?kg +2m AN,

ko AN (y ey = %"emﬁkgkf +2m AN,

RAAY" (ka ko) = S KRS + 2m A, (6.2)
The total vertex is therefore obtained by adding up all these projections together with 3

CS contributions to redistribute the anomalies. Next we are going to discuss the explicit
way of doing this.
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A ALK

Figure 17: Triangle contributions to the (yZ;Z,,) vertex in the chiral phase. Notice that the first
four contributions vanish because of the SM charge assignment.

7. The (vZ,Z,,) vertex

At this stage we can generalize the construction of (yZZ) to a general (yZ;Z,,) vertex. The
contributions coming from the interaction eigenstates basis to the (yZ;Z,,) in the chiral
limit are given by

%TT QY] (YYY) = —Tr QY] R )%, (v Z1Zm) +
%TT (QyT3] YWW) = —Tr Qv TS| R (v 21 Zm) +
%Tr (Qy T3] (WYW) = —Tr (QvTS] RN (V21 Zm) +
%Tr (Qy T3] (WWY) = Tr Qv T3 RV (721 Zm) +
ST Qs TR WBW) = ST [Qu, T R4 (12120 +
%Tr Qp, T2 (WWB;) = Tr Q5,72 RV (42,2, +
%Tr [Q5,Q%] (YB;Y) = —Tr (Qp,Q3| R 1% (W Zn) + ...
577 (@5, Q3] (VY By) = STr [Qu,Q3) B35 (v ) +

Tr [QYQBjQBk] (YB;By) = Tr [QyQp,Qs,] EZJZB: Y21 Zm) + ... (7.1)

and they are pictured in figure 17. The rotation matrices are defined in the following
expressions

YYY A A A
'YZI Zm [3OYZl OYZm OY'y]

WWW A
’YZlZm [3OW3Z1 OWSZm OWS“{]

RYWW _

Rz 2 = [OWZl 011,03 7,, + Ot 2,01, 03z, + Oiy 7,01 5, O3]

RVYY

’YZz [ WSZl OYZm + OWmeOYZl)OY»y + OWMOyszyzl}

REYY

'YZlZm |:OB Zl OYZmOY'Y + OB ZmOYZl OY’y:|

REYW N
R 7z, [ OB ZlOYZm + OB ZmOYZl)OWyy (OB ZmOWg,Zl + OB ZZOWSZm)Ony]
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Figure 18: Chern-Simons counterterms of the (yZ;Z,,) vertex

Y B; B, A A A A A
R’YZlZ = [(OBiZlOBjZm + OBiZmOBjZl)OY’y:|
WB;B; A A A A A
‘R'YZlZmJ = |:(OB1'ZL OBj Zm + OBiZmOBj ZL)OW3'\/:|
B;WW A A A A
R [OB Z OWZmOVW, + 03,2, Owz, OW'y] (7.2)

while all the possible CS counterterms are listed in figure 18 and their explicit expression
in the rotated basis is given by

YB,Y @ YB;Y
Vs = - S Ay e — s B2 22
f
- Z Lorv e SN (k0 — ko) R) g7 V2L 2,
YB;B; 4 Y B;B
+Z 89 TN e — kaa) R g V2L 2,

Z HWBlWan M (kg o — /ﬁs,a)R:VZJzBlWA)\ZMZV

WWB; G WW B
— 9 3n Auua(k&a _ kl,a)R’yZl JAAZMZTI;L
J

; (7.3)
where we have defined k3, = —kq, with ko = (k1 + k2)o the incoming momenta of the
triangle. Using eq. (4.20) it is easy to write the expression of the amplitude for the (yZ;Z,,)
interaction in the m; = 0 phase, and separate the chiral components exactly as we have

done for the (yZZ) vertex. Again, the tensorial structure that we can factorize out is
(LLLYM™(0)

YB;Y pYB;Y
08l = 3G OA 7 {ZgygB oY REY
YYB YYB YBZ'B' Y B;B;
+Zgy933 "R, 7 +ZngBlgBJ ;R
2 wWB,W p,WB,W 2 WWB,;, -WWB:
+Z'929Bi9f R’YZlZm + 292931’91‘ JRﬁ/Zlij . (74)
7

J
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Also in this case we use eq. (4.13) and proceed from a symmetric distribution of the
anomalies and absorb the equations the CS interactions so to obtain

L vBy A A YB;Y
—~(VZ ZmMmy=0 = Y _ 9¥98, Y 307 AV (OR 2y AVZ[ Zy,
i f
+ Z gyzngj
J f

YB;B; 1 v Ay Y B; B, v
+> gvgsgs, »_0; '3 {Av‘iw(o) +AV/</A(O)] R 55 A2 2y,
— -

1 yyB; \a YYB; 4
S0 VAR, 5 N2 7,

Z7J

1

WB,W L A\ WB,W 4

+ Z 9598 Z 0; §AV/ZVV(0)RWZIZm A3Z)' 2y,
( f

wwB; 1 A WW B,
J f

At this point one can readily observe that a simple rearrangement of the summations over
the ¢, j index leads us to factor out the structure VAV plus VVA since we have the same
rotation matrices. Finally, in the my = 0 phase we have

1 v v v
<VZlZm>|mf=0: - § :5 [A?/AAV(O) + Ai\/l{/A(O)} A’)Y\Zl“Zm X
!

2 B, YY pYYB; YB;B; Y B;Bj 2 WW B; pWW B;
D\ Sem O Ry, Y ovamgs, 0 U R+ gagn 0 MR
i J
(7.6)

If the CS terms are instead not absorbed we have

1 124 14
V21 Zm) |y =0=Vosim — Y gAﬁ’AA(O)AiZf‘Zm X
f

2 BYY pYYB; YBiBj pYBiB; | 2 WWB; pWW B;
E 9v 9,9 o Rz, E 9v9B;9B;Y f JRA/ZZZ,i + 92980 f Rozz. (
i J

(7.7)
which is equivalent to that obtained in (7.6).

7.1 Amplitude in the m; # 0 phase

Once we have fixed the structure of the triangle in the my = 0 phase, its extension to the
massive case can be obtained using the relation

(LLL)(ms # 0)=—[Aavy(mys # 0) + Ayav(my # 0)+Ayya(ms # 0)+Aaaa(mys # 0)]
(7.8)

— 43 —



and the expression of the vertex will be
1 v 14
V1 Zm )0 = g ) _ALLLY (my # 0)ANZ1 7y {a3 07 RYL Y,
f

SAaWWW pWWW 2/’ YWW pYWW
+950F "V R+ gvgaf " Rz g

2 WYY pWYY 2 YYB; pYYB;
+9v 9207 " Ryz, + Z 9y 9B; 9f R«,Zl Zm

)

BiYW pB,YW Y B;Bj oY B;B;
+> gvgagn 07V RET +N " gvgpg0; T R,
i Z"j

W B;B; ,W B;B,; ; i
+>_0208.98,0; " Rz + ) 398,07 " PR
ij i
+m7 [(LRL) + (RRL) + .. ]. (7.9)
By imposing the following broken Ward identities on the tensor structure
W (zzn)™ + V) = 2
K ((’YZlZm>’\“V + VC’\‘S‘V) = —%EkuaﬁkLakzg - 2mfA)‘”

3 ((fyZlZmV\‘“’ + Vgg”) ~0 (7.10)

E)\Vaﬁk17ak2’ﬁ + meA)\V

we arrange all the mass terms into the coefficients A; and Ay of the Rosenberg parametriza-
tion of (LLL)*" and we absorbe all the singular pieces. Since all the CS interactions act
only on the massless part of the LLL structure, we are left with an expression which is
similar to eq. (7.5) but with the addition of the triangle contributions coming from the
Standard Model where the mass is contained only in the denominators. Organizing all the
partial contributions we arrive at the final expression in which the structure VAV plus
V VA is factorized out
V2 Z) g0 = — 3 5 [ AV (g £ 0) + AW (£ 0)] 42023, x

2
f

3)YYY BYYY SAWWW BWWW
{gYef R 77, +920F Ry 77
oI+ gt R,

B, YY pB;YY B, YW pB; YW
+ Z g%gBl Hf R'YZI Zm + Z ‘ngngl ef R'YZL Zm
7 )

YB;B; Y B;B,; WB,;Bj ,WB;Bj
+ZngBigBj9f JR»YZlan + Zg2gBigBj9f JR»YZlZmJ
%,] ,J

P st | (711
7

8. The (Z,Z,,Z,) vertex

Moving to the more general trilinear vertex is rather straightforward. We can easily identify
all the contributions coming from the interaction eigenstates basis to the (Z;Z,,7,). In the
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Figure 19: Triangles contributions to the (Z;Z,,Z,) vertex

chiral limit these are

5Tr Q3] (YYY) =

ETT [Qy T2 (YWW) =

%TT [Qy T3] (WYW) =

21

L1 [QyT2) (WY =

1

1
57 QT3] (WB;W) =

lT?‘ [Qp, T2 (WWB;) =

QTT (Q5,Q%] (B;YY) =

1
21

—TT‘ [QB QY] (YY Bj)

Ir [QYQBjQBk] (YB;By,)
Tr [QvQp,QB,] (B;Y By)
Tr [QyQs;Qp,] (BjBiY)
Tr [QB,Q@B,Q@B,) (BiB;Bx)

and are listed in figure 19. The rotation matrices, in this case, are defined as

5T [Qp,QY] (YBY) =

3! [QY] R)Z/l)%izr (ZlZmZT’> +

gTT (QvTE| Ry, (Z12m Zy) +

1
i T (QvTE] Rz, 2,02, %12 Z) +

1
o T (QvTE] B2, (%2 Ze) +

1 B:WW
TR (QB, T3] Ry 5. 7 (Z1ZmZr) +

1 W B;W
o LT (QB, T3] Ry, ) 7 (21 Zm Zr) +

1 WW B,

_TT [QBjT32:| Ry 5 2 \Z1ZnZy) +
RBIYY

_Tr [QBJQY] ZlZ Zy <ZlZ Z>

1 RYBY

QTT [QBjQY] 217 2\ D1 L Zr) +

Y'Y B;

1
5 Tr [QB]‘ Q%’]

RZlZmZT.<ZlZer> + ...

Tr [QvQp,Qn,) Ry s \ZiZmZy) +
Tr [QyQs;Qs,] Zj;Bg (Z1ZmZr) +
Tr [QvQp, Q) Ry 7y, (Z12mZy) +

Ir [QBiQBjQBk] R?;ZiLEZ;%ZlZmZ’» T
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RZ?;ZT. = [30{}21 Oézmoézr]

R%%WZ/T' = [30%/3210‘1;4[/3Zm0%/32r]

Révzvﬁvzr = [O)éZl OémeOé/Zr + O)éZmO{/Il/Zl O{}VZT + O{}ZTO{}VZZ Oif}vzm}
Rg’z/fz,. = [O{;{V(;Zl O)éZm O)éZT + Ofﬁ%/gzm Oézl Oézr. + ijlvng. O)éZl O)éZm]
R?j;fz,. = _Ogjzl Oézm O)éZT + OngmO}éZl Oézr. + Oéj Z, Oészézl}

BiYW _ [~A A A A A A A A A A
Ryy 2 = OBjZl(OYZmOW3ZT + Oy 2, O, 2,,) + OBjZm(OYZlOW3ZT + Ow, 2,0y z,)

A A A A A
+OBjZT(OYZm OWw,z, + Oy, OWme)]
BjBrY _ [/HA A A A A A A A A A
R,z 2, = _(OBjZmOBkZT +03,2,08,2,)0v 2, + (OBJ-ZTOB;CZL + 05,208,200V z,,

A A A A A
+(OBjZlOBkZm + OBjZmOBkZl)OYZT]
BiByW __ [/ ~A A A A A A A A A A
szz,izr. = _(OBjZmOBkZT + OBjZT-OBkZ”L)OWng + (OBJ-ZTOB;CZL + 03B,z 03, 2.)0w, 2,
A A A A A
+(OBJ-ZZ 08,2, + OBz, OBkZl)OWSZT}

BiWW  _ [HA A A A A A A A A
2277 = |OB,2,0W;2,OWs2, + 08,2, Ow; 2, 0w, 2. + OB,2,0W;2,, Ows 2,

BiB;jBr _ [(HA A A A A A A A A A
Ry 7 7 = _(OBj 2,082, + 0B8,2,08,2,)08,2, + (08,208, 2, + 05,208,2,)08,2,,

Regarding the CS interactions (see figure 20), we observe that we have a CS term cor-
responding to the anomalous vertex of the type B;B;Bj, which is non-zero, and we can
formally write this trilinear interaction as
" ik ik o
Véjsy Imr — gBigngBkanezjnrRzganl Zrl;LZ;"j [’{i (6[1(31, /\7 M, V] - 6[1{727 /\7 M, V])

+rj (elka, A, i, v] — elks, A, 1, v]) + kg (lks, A, p, v] — ek, A\, p, v])] (8.3)

. ijk _ pBiB;jBy
where for brevity we have defined Rj;, = R, 7 /", and so on.

The coefficients 0;3:7, are the charge asymmetries, and the coefficients x; ;x, are real
numbers that tell us how the anomaly will be distributed on the AAA triangles. Both
are driven by the generalized Ward identities of the theory. In this generalized case the
CS interactions are not all re-absorbed in the definition of the fermionic triangles. In fact
in this case there is no symmetry in the diagram that forces a symmetric assignment of
the anomaly, and the CS terms in the B;B;B} interaction can re-distribute the partial
anomalies. In this case the expressions of the B;B;B} vertex in the momentum space is
given by

A A ?
VBlingBk - 4DBiBjBk 9B:9B; 9B, AAHAVA(nlf =0,k1, ky) + DBZ-BJ-B,c 9B;9B; 9By, 2 X

2/{j

o 2K
_Zg)\,ul/a(kLa _ k«’z,a)—i‘ 5 €>‘Wa(k‘2,a _ k37a)+7k5)‘“”°‘(k3,a — k;l’a) .(8.4)

9

We recall that in the treatment of Y B;B) and other similar triangles we still have two
contributions for each triangle, due to the two orientations of the fermion number in the
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Figure 20: Chern-Simons contributions to the (Z;Z,,Z,) vertex. As before, in the my = 0 phase

all the SM contributions vanish because of the charge assignment.

loop and our previous expression, obtained for the case of the Y BB vertex, still holds.
Also in this case leads us to absorb the CS interaction in the anomalous vertex. On the
other hand, for the B; B; B vertex we have

ai a] ak
3A2%A(07 klv k2) - ?neija(kl,a - k2,a) - ?eija(k’Za - k3,a) - ?neija(kB,a - kl,a)
A
= 3AA¢Z1jAk(0, k1, k2), (8.5)

where we have used the notation A(ms = 0,k1, k2) = A(0, k1, k2) and @), = k'a,. Using
these equations we can write the (Z;Z,,7,) triangle in the following way

1
(D172 mgn = 5 [ AV 0) + AV (0) + A4 (0)] 20220

2 YYB, pYYB; B;B;Y Y BBy
SO {ham 0} R+ S ovoman 0] RGP,
oo j

B,WW B, WW
+gBig%6f Rzlzmzr}

BiB;B, 1 \ A B;B;B
+ 3> 9mon,98,8] P SANG 4 (OR, 2 ZAZY. (86)
f i7j7k

From this last result we can observe that the anomaly distribution on the last piece is, in

general, not of the type Ai‘{z/ 4(0), i.e. symmetric. If we want to factorize out a Az’ff 4(0)

triangle, we should think of this amplitude as a factorized Az’f: '4(0) contribution plus an
external suitable CS interaction which is not re-absorbed and such that it changes the
partial anomalies from the symmetric distribution AXX/ 4(0) to the non-symmetric one

AX_L ij Ay (0). These two points of view are completely equivalent and give the same result.
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Finally, the analytic expression for each tensor contribution in the my = 0 phase is
given below. The AV'V vertex has been shown in eq. 4.26 while for VAV we have

. 1 1 11—z 1
AV (0) = ﬁ/o d:c/o dym {elkr, A, 1, V(K2 - koy(y — 1) — wyky - k)
+E[k27 )‘7 H, V](kQ : ka(y - 1) - ‘Tykl : k2)
+elk, ko, \, V] (K z(x — 1) — zykh)
+elki, k2, A, pl(k3y(1 —y) + zykl)} (8.7)

where the denominator is defined as A(0) = kf(z — 1)z + y(y — 1)k3 + 2zyk; - ko.
Then, for the VVA contribution we obtain

A (0) = / d:c/1 xdyA {elkr, A, p, V(K1 - krz(1 — &) + zyky - ko)
+elko, A, p, v] (k1 k'l:z:(l —x) + zyky - ko)
+elk, ko, \, V(K x(x — 1) — zyk))
+elky, ko, A, pl(k3y(1 — ) + xyky)} (8.8)

and finally the contribution for AAA is Ay44(0) = 1/3(Aayv(0) + Ay av(0) + Ayya(0))

1

1 1—x
, 1
AL (0) = 32 / da ; dy—A(O) {elk, A, 1, v] (2y(y—1)k3 —ayky - ko+x(1—2)k7)

telka, A, ] (201 — 2)xki + yks - ko + y(y — DE3)
+elk, ko, A, V](kfx(:n —-1)— :L"yk‘é‘)
telki, k2, A, pl(k3y(1 — y) + xykl)} . (8.9)

9. The my # 0 phase of the (Z,Z,,Z,) triangle

To obtain the contribution in the my # 0 phase we must include again all the contributions
(YYY) and (YWW) coming from the SM. We start by observing that in this phase the
following relation holds

<LLL>)"“’(mf =+ 0) :—[AAAA(mf #* 0)+AVAv(mf #O)—FAVVA(mf * 0)+AAvv(mf7§0)].
(9.1)

Then, since the final tensor structure of the triangle is driven by the STI’s, we start by
assuming the following symmetric distribution of the anomalies on the A 444 triangle

v an \pa 1 Y
k?AzlilA(mf # 0, k1, ko) = 3 e Bklak25 + 2mf§A)‘

v a/n o 1
RS AN A (my # 0, k1, ko) = —?&?A“ Plrakas — szgAM

n 1
FMANY (mg # 0,k kp) = %€uuaﬁk1ak25 + megA‘“’, (9.2)
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Figure 21: STI for the Z; vertex in a trilinear anomalous vertex with several U(1)’s. The CS
counterterm is not absorbed and redistributes the anomaly according to the specific model.

where

™

AW — —m—2f€)\yaﬁk‘1ak2ﬁ /1 /l—m d:ndy;- (9.3)
0o Jo A(my)

These relations define the AAA structure in the massive case. The explicit form of
this triangle is given by

+ ko - koy(y — 1) — xyky - kg]

2
+elka, A\, p, V] I ky - kix(z — 1) + xyk; - kg]

+elkr, ko, A, v](K'z(x — 1) — zykh)
+elky, ko, A pl(kyy(1 — y) + ayky)} (9-4)

where A(my) = mff + (y — V)yk3 + (z — 1)xk? — 2zyk; - ko.
Then, the final expression in the m; # 0 phase is

YYY pYYY
(Z1Zm Zy) im0 = — 200 21, ZY X ZAAAA (my #0) Z {9307 " Ry 4.
7 i
IR, oy 20 R, + )Y R,

YYB; pYYB; B;YW pB;YW
+gY.g 0 RZlZer + ng2gB~9 RZLZmZT

B;B;Y ,YB;B B;B;W
+ZQY9B 98,07 Ry 75+ g298,98,0;

J J

B; ByW
RZI ZmZr

BiWW pB;WW oBiBiBx pBiB; B
+931929 Ry gz, + ZgBlgB 98,9} "Ry, v+ Ves.
(9.5)

The diagrammatic structure of the STI for this general vertex is shown in figure 21,
where an irreducible CS vertex (the second contribution in the bracket) is now present.
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10. Discussions

The possibility of detecting anomalous gauge interactions at the LHC remains an interesting
theoretical idea that requires further analysis. The topic is clearly very interesting and may
be a way to shed light on physics beyond the SM in a rather simple framework, though, at a
hadron collider these studies are naturally classified as difficult ones. There are some points,
however, that need clarification when anomalous contributions are taken into account. The
first concerns the real mechanism of cancellation of the anomalies, if it is not realized by a
charge assignment, and in particular whether it is of GS or of WZ type. In the two cases the
high energy behaviour of a certain class of processes is rather different, and the WZ theory,
which induces an axion-like particle in the spectrum, is in practice an effective theory with
a unitarity bound, which has now been quantified [20]. The second point concerns the size
of these anomalous interactions compared against the QCD background, which needs to
be determined to next-to-next-to-leading-order (NNLO) in the strong coupling, at least for
those processes involving anomalous gluon interactions with the extra Z’. These points are
under investigations and we hope to return with some quantitative predictions in the near
future [20].

11. Conclusions

In this work we have analyzed those trilinear gauge interactions that appear in the context
of anomalous abelian extensions of the SM with several extra U(1)’s. We have discussed
the defining conditions on the effective action, starting from the Stiickelberg phase of this
model, down to the electroweak phase, where Higgs-axion mixing takes place. In partic-
ular, we have shown that it is possible to simplify the study of the model in a suitable
gauge, where the Higgs-axion mixing is removed from the effective action. The theory is
conveniently defined, after electroweak symmetry breaking, by a set of generalized Ward
identities and the counterterms can be fixed in any of the two phases. We have also derived
the expressions of these vertices using the equivalence of the effective action in the interac-
tion and in the mass eigenstate basis, and used this result to formulate general rules for the
computation of the vertices which allow to simplify this construction. Using the various
anomalous models that have been constructed in the previous literature in the last decade
or so, it is now possible to explicitly proceed with a more direct phenomenological analysis
of these theories, which remain an interesting avenue for future experimental searches of
anomalous gauge interactions at the LHC.
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A. Gauge variations

In this and in the following appendices we fill in the steps that take to the construction of
the Faddeev-Popov lagrangean of the model.

To define the ghost lagrangean we need to compute the gauge variations. Therefore
let’s consider the variation

5W3 = Z?Mag — 92€3bCW304ca 5Yu = 8u9Y7 5BM = (9”93, (A1)

where the parameters have been rotated as the corresponding fields using the same matrix
Oa

6, = Ofras + Ofyfy, (A.2)
07 = O3103 + Ogsby + O30, (A-3)
07 = O a3+ O450y + 04505, (A.4)

In the neutral sector we obtain the variations

§Ay, = Ofy W2 + 0756V,

= 0y +i 07} g2 (0 WF —a™ W), (A.5)
8Z, = O3y SW2 + 035 6Y,, + 035 6B,,

= 007 +i0%) g2 (o W,F —a™ W), (A.6)
8Z, = 04y W2 + 035 6Y,, + 033 6B,,

= 00z +i03) g2 (0 W,F —a™ W), (A7)

and for the charged fields we obtain

W = Oua™ FigaWy (0116, + 03107 + 0316)
+igy (O Ay + 03 Z, + 041 Z),) o* (A-8)

After a lengthy computation we obtain

. oA
(SH;r = —zﬂvuozJr - z[— (gzOﬁ + 9Y0142 + QBQEO%)
V2 2
az
+5 (92041 + 9y O3h + g4l O3h)
Qg .92 .
= (9204 + gy O3 + gpal O%) }Hzf Y (Hyg+iH)) o (A9)
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and using the expressions for H,', HS R HS ; derived in [7] we obtain

5}}[;‘ = —i%vua"' — [ (ggO + gYO 12 T 9BY, 013)
az

+— 5 (92021 + 9Y022 + 9B, 023)

o )
+ 22 (92031 + 9Y032 + 9B, 033)] (sin BGT — cos BH™)

—i% [(sinaho —cosa HY)

+z'<0;<1x Orycs = O1sh 7 +_O¥262+O¥3CIG2’>}04+. (A.10)

cicy —djea c1cy —cieo

Similarly, for the field H;’ we get

. g aA
5Hc—li_ = —Z—2UdOé+ ) |: 5 ( 2011 +gy012 +ngd 013)

V2
az

+—= 5 (92021 + 9Y022 + 9B, 023)

o .
+ 2Z (92031 + gy032 + 9BQqy 033)] (cos BGT + sin ﬁH+)

—i% [(cosa h? + sin o H)

X X X X
T <O§1X 02202 O 531 G% + 022,02 + ,02301 GZ’)] at (A.11)

Using the relations obtained for the charged Higgs in [7] we get for the charged goldstones

6Gt = sin B6H, + cos B6H
0G™ = sinB0H, +cos B6H . (A.12)

In the Higgs sector we have

6HY, = —% (o™ (sin BGT — cos BHT) + a™ (sin SG™ — cos BH ™))

+\f (92031 — gv O3 — gBa Oss) oz

+ (92031 9y Osh — gBa O%y) oz

+ (92081 — gy 0% — gpa, Osy) az

+ (92041 — 9y O% — gaY O33) az/] (sin o’ _2008 aH0)7 (A.13)

and
5Hc(l)f = —% (a_(COS BG™ +sin BHT) + o (cos BG™ + sin ﬁH‘))

+ vd2 [(920%) — gy O3y — gaf0%3) az

+ (92041 — 9v O35 — gqf O33) az/]

+ [(9205) — gy O3 — gBag O3) az

+ (92041 — gv O35 — 947 O33) az/] (cos ah? J;Sin aHO), (A.14)
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while for the neutral goldstones we have

6GY = ON6HL, + 03,0 HY; + 0%, (A.15)
6GY = OBIHY, + OX6HYy + OX0b. (A.16)

Finally, we determine the variations of the two goldstones

6GZ = ¢10GY + c26GY, (A.17)
6G7" = 6GY + 66, (A.18)

and the gauge variation of the Stiickelberg b in the base of the mass eigenstates
0b = —M,0p
M (Of0 + 0D (A.19)
B. The FP lagrangean
This is explicitly given by

28F7 7 20F7 g 2O0F7 o gOF7 L g0F7

Lrp = —C 50, c 50, c 5970 c 59+c e 5g ¢
Z/ Z/ Z/ Z/ Z/
_EZI 6JT' CZ - EZ/ 5f Zl N éZl 5JT' C,Y _ EZI 6JT' c+ - EZ/ 6JT' c_
007 007 00 00+ 06_
A A A A A
A 0F Z_éﬁ/&?-" VcZ/—é”’(;}— ’YCPY—EA/(;JT ’YC+—6A/5JT T
00z 00z 00, 00+ 06_
o OFYT g OFYT g GOFWT L LFWVT 0T
007 007 00 00+ 06_
SFWT SFV 4 SFWVT o 6FYT L 6FY
—c~ —c” —c- - — B.1
c 50, c c 50, c C 56, c c 50, c C 50_ c, (B.1)
(B.2)
where we have computed
SF% A 6G% oz
50 O 50, $zMz 50, 50, ; (B.3)
e 5GY 6GY Y §HY, Y §HY, v 0b
50, c1 50, + ¢ 50, c1| O P + Ox9 P —1-032@
SHY SHY 0b
X ul X dI X 7 B.A4
+e2 <O13 50, + O3 50, + Og3 592)’ (B.4)
SHY, vy  (sinah® — cos aHY)
ul _ | X ws B.
50, [ ol 5 f (B.5)
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— 54 —

SHY, va | (cos ah?® + sin a HO)
- + fd7
30, |2 2
A A B A ob A
fud = 92051 — 9v O35 — 9By, 4033, @ = —MiOa;3.
SF% VA e Vs
56, = e, Mz 50,
567 8GY 8GY L OHY, SH? 8b
— — u OX dal OX
S0, Voa, T 2sa, 1\ Oz, T O2gg, T Ong
SHY SHY )
x O2yr x %4gp X .
+cCo <013 592/ + 023 5921 + 033 5HZ/> )
§HY, T (sinah® — cosaH) | .5
30, |32 2 u
0Hg _ | va N (cos ah? + sin HY) 15,
66/ V2 2 4>
B A A B A ob A
ud = 92031 — gy O35 — QB‘Ju,dos?,S @ = —MO33
SF% oZH 5G% VA 5G%
5 = O — &z Mz——; —— =0 - =0;
56, On 56, SzMz 56, 56, 56,
SFZ YA 5G7 5z
Y = 0,50 My = ig O W,
59+ au 50+ §ZMZ 50+ ) 50+ 192U97
5GZ 8G9 6GY LOHY, GHY . db
5o, “5g, T, — |\ Oy, TO2Gg tOng
SHO SHY b
X ul X dal X 77 1.
+02 <013 59+ + 023 60+ + 033 60+),
—5H3[ = —@(sinﬂG_ —cos BH™);
50, 2 ’
0
5£il = —%(COS BG™ +sin BH™);
ob
E —_ 0.
5F? 52z 5GZ szn
= O — &My = igOg W
60_ a/lz 59_ §ZMZ 59_ 9 59_ 292 21

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)
(B.17)

(B.18)

(B.19)



50 Clsg. T @ 5o TOngpT T O0ngy

5G% 6GY 6GY Ox « OHY, « OHY; b
50_ 50_ 12

SHO SHY &b
+e2 (olg ul 4+ 0f =4 + 05— B ) (B.20)

50_ 50_

5;;_?1 - _%(sinﬁcﬁ — cos BH™); (B.21)
5;;% - 922 (cos BGH + sin BH); (B.22)
=0 (B.23)

For the gauge boson Z’ we obtain

o ( o o)

+ch (Oi(g 5;;21 + 034 65];9[31 + O?s(%—Z)’ (B-25)
R
ir” aufg'f o Lo 2
AR LA = et (B30
5;;;1 _ %((55215; % _o. (B.31)
55](;: 8u§;4; g;f —0. (B.32)
A -0
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§F A SAY
=

50+ 504’

SFA _ 5 04

50— 50 "

For W in the FP lagrangean we have the

SFW™ Wtk 5G*
5o, Onsg, TibwMw g
SWHH .

50, —igy O3y W,

SHF i .

50, —§f2wu/(smﬁG+ —cos BH™);
SHT j

S = — 5 F3i (cos BG + sin BH);
fona = 92051 + gy Osh + gL 4055

SFWT o S " 5G*
50, ~ Ongg, T ewMw g
SWHH .

So5 = 0w

OH LW aet +
50, —§f3u(smﬁG —cos BH™);
fana = 9208 + gy O3y + gpal 4035.

SFW o S " 5G*
5o, ~ Ongp, tiowMwg
SWHH A

= —igoOf W,
50, 11
OHy _ dow, ey +
50, —iflu(smﬂG —cos BH™);
f1vg,d = g0} + gy 07y + QBQE,dOé’,-

SFW™ SWHe 5GT
5o~ Ongg ibwMw g
SWHH
= 0" +iga(Of) A + O 2 +

_l’_
SH i i
v 7 y — — . hO
50, \/iggv 292{(5110@
X 7 X
i[Oﬁ + <O126,2 0,1361>Z

§AY

WI = —igo O/ W™K, (B.34)
o
oAy _ iga O, WHH, (B.35)
06—
contributions
(B.36)
dGT + SHT
(B.38)
(B.39)
(B.40)
(B.41)
5GT HF SHT
50, s1n5502/ + 00855921 (B.42)
0H, + +
S0 = f3d (cos BGT+sin BH™); (B.43)
Z/
(B.44)
(B.45)
dGT SHT SHF
—— =i v ; B4
50 sin 3 50, + cos 8 50, (B.46)
SHT j
d :—Effg (cos BGT +sin BHT); (B.47)
00, 2
(B.48)
oGt ﬁ5H+ n ﬁ5H+
50, = sin 50, cos 5 7
05, Z"™); (B.49)
—cosaHY) +
n < O 62 +013c1> ,} }; (B.50)
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SHT j ‘
ﬁ = _égwd — %gg{(COSOzhO +sinaHY) +

X 1 OX _ X X
z’[O%‘l + <—0226,2 0,2361>z + < Onca + /023(;1)2,} } (B.51)
SFWTH SWHE 5G*
5o = Ongp T iwMw g (B:52)
SWHr 5G+ SHF SH;
0 o u oy . B.
50 0; 50 Slnﬁée_ —1—005650_7 (B.53)
SHT SHT
Th =0 =0 (B.54)
For W~ we get
SFW oWw—# 0G~
50, (%W - ZfWMW@; (B.55)
SWE 5G— . SHy SHy
_ : o _ u . (.
50, 1goO51 W H; 50, sin 3 50, + cos 3 50y (B.56)
_ . SH-
OHy LW (in BGH —cos BHTY; B LWt o BGH Lsin BHT). (B.5T)
004 2 004 2
SFW ow—# 0G~
50, - 8# 504 — i§w Mw 50, ) (B58)
W . A, 6G- . 6H, SHy
50, 19205 WH, 50, smﬂMZI +008650Z/ ; (B.59)
_ . SH- i
OBy 5 in B — cos BHY): S L o5 BG4 sin BH). (B.60)
50Z/ 2 60Z/ 2
SFWH oW —H 0G~
5o, = Ongg — iwMw g (B.61)
W 5G= . SHj SHy
50, 20nW 50, P, teoshg
H ) 0H; j
0H, — iflwu/(sinﬁG+—cos BH):; ——d _ Eflvg+(cos BGT +sin BHT). (B.62)
50, 2 00, 2
SFWTH oW —H 0G~
59+ 8;L 59+ i&w Mw 59+a ( 63)
SWn 3G~ SH SH7
R 0; 50, 51nﬁ50+ +cosﬁ50+, (B.64)
0H, 0H;
5 =0 =0 (B.65)
SFWVH OW—H 6G~
5o = Ongg —ibwMw g (B.66)
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s =0 - ig2 (O Al + O3y ZH + O3 Z'M); (B.67)
0G~ 0H,; 0H
—— =sinf——— + cos f——; B.68
00— p 00— p 50_ " ( )
0H, 1 ) 0
= —@gaUy + = sin ah® — cos aH°
0% ch — 0% —0%c9 + 0%
—i [Oﬁ + (M z+ 1272 i et A PARS (B.69)
0H; 1 1
d 0 : 0
—L = —gus+ = cos ah” + sinaH
50 \/592 d 292{( )
0%,chy — OXa ¢ —0%,c0 + OXsc
—i [O%‘l + (M z+ 2272 7 72571 )08 (B.70)
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